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We need to keep track of our heading direction, and head direction cells in various brain regions represent

exactly that; therefore, they have been identified as key substrates of direction coding. But how is such

a variable computed? Head direction representation is thought to arise from the integration of angular

velocity, suggesting the existence of angular head velocity (AHV) neurons. Theoretically, vestibular, visual,

proprioceptive andmotor command signals can all contribute to angular velocity computations, while the actual

coding mechanisms have remained unclear.Keshavarzi et al. addressed this by separately controlling vestibular

and visual cues in a head-fixed configuration (Keshavarzi et al., 2022b). They targeted the retrosplenial cortex

(RSC), a multisensory associational area known to be important for the integration of egocentric and allocentric

information during navigation (Solari & Hangya, 2018). The use of high channel-count multielectrode arrays

(silicon probes) allowed the authors to track a large number of neurons through different conditions, including

free exploration of an open field arena. They identified subsets of neurons representing head direction, AHV,

locomotion speed or a combination of these variables.

A large fraction of AHV neurons showed similar tuning properties during free exploration and passive

rotation in the dark, demonstrating the importance of vestibular input. In agreement, lesioning the semi-

circular canals largely reduced these responses. Next, mice were presented with visual motion stimuli while

remaining stationary. This showed that visual signals also contributed to AHV coding and specifically suggested

that they increased the gain and improved the signal-to-noise ratio of AHV representations. Mice trained on

discriminating rotational stimuli showed improved performance when both visual and vestibular information

was available compared to either vestibular-only or visual-only stimuli, further demonstrating the integration

of the two types of sensory cues. Finally, the availability of both vestibular and visual information improved
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decoding accuracy of angular speed from ensembles of retrosplenial cortex neurons compared to single

modality stimuli, at least at the beginning of motion.

Keshavarzi et al. provide compelling evidence for the critical role of vestibular input in encoding AHV within

the RSC. While the widespread presence of vestibular signals in rodent cortical circuits is well-documented

(Rancz et al., 2015), this study significantly advances our understanding by demonstrating that RSC neurons

can also encode AHV. These findings align with research that identified AHV representations in the RSC

and adjacent cortical regions, including primary visual, secondary visual, posterior parietal, primary motor,

secondarymotor and primary somatosensory cortices (Hennestad et al., 2021), and with later work that showed

AHV in parahippocampal circuits (Spalla et al., 2022).

Notably, the relative contributions of vestibular and visual signals to AHV encoding likely depend on the

specific cortical area and the AHV amplitude. Visual flow may be more prominent at lower AHV ranges (0-90

deg/s), while vestibular input likely dominates AHV representation at higher speeds (Stahl, 2004; Hennestad et

al., 2021). This suggests a complementary contribution of vestibular and visual information, enabling encoding

a broader range of angular velocity and driving a widespread AHV signal across cortical areas.

This is an elegant study in which a creative and clear experimental design helps teasing apart different

contributors of a specific computation that normally appear linked during natural behaviors. This way it also

demonstrates the power of precise experimental control, while immediately extrapolating to natural behavior

by examining the same neurons during free exploration. It additionally demonstrates a non-trivial multisensory

integration in the retrosplenial cortex that can directly contribute to egocentric spatial representations during

navigation (Alexander & Nitz, 2015, 2017).

Editorial note: A preprint version of this article was peer-reviewed by PCI Neuroscience. The refereed preprint can

be found through the cited link here (Keshavarzi et al., 2022a), and the peer-review process here.
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