
Dear Marco Leite and reviewers,

Thank you for the fair and considerate review of our manuscript. We agree with the overall
comments of both reviewers, and have made changes accordingly. Below, we outline in
detail the changes made, with reference to each reviewer’s specific comments (in gray), and
also include a diff pdf file which presents all added and removed text since the previous
version. Furthermore, in consideration of the overall comments of both reviewers, we have
made additional modifications to the abstract and main text where we felt that more clarity
was warranted. The manuscript has benefited greatly from the reviewer comments, both in
coherence and comprehension. We thank you again for the time put into this review, and we
await your decision on this new version.

Kind regards,
Michele Nardin, James Phillips, William Podlaski & Sander Keemink

Detailed response:

Review by anonymous reviewer, 2021-05-04 16:52

Overall, I like the paper very much. I think it is a very nice extension of the SCN framework.
The maths is thorough and the paper is written clearly (although a few clarifications are
necessary).

Most of my criticism revolves around the lack of a clear biological mechanism behind
multiplicative synapses. Even though it is not strictly necessary that the authors deliver a
precise biological interpretation, the paper could benefit from a more detailed examination of
possibilities. It would moreover strengthen the validity of multiplicative synapses.

Major

● I am still struggling to think of an implementation of multiplicative synapses that is
biologically feasible. For example, in 1B last row, how would the blue neuron know
about the coincident firing of red and orange? In this simple illustration, one might
think that a simple spiking threshold could do the trick. Basically, only when two
neurons are activated at the same time, blue reaches the threshold. However, I am
not sure if this interpretation can be generalized easily. If so, it would make strong
predictions about spiking thresholds etc. Anyway, it would be nice if the authors could
go more into the details how neurons can implement the multiplicative synapses (The
authors state in the Methods „[…] each neuron in Gd needs to keep track of
coincident firing of any neuron in Ge with any other in Gf.“ And I think it would be nice
to have a clearer picture of how this can be achieved in biological systems)

We agree with the reviewer that not enough detail was given on the biological
implementation of multiplicative synapses and related predictions. To address this,
we rewrote the explanation in Section 3 of the results, which we repeat here for
convenience:



With this factorization we demonstrate how any given multiplicative interaction of
state-variables can be accurately implemented through multiplicative synapses
between neurons (Fig.1B+C~bottom, Methods~7.4). The matrix Ωmd then  represents
d-th degree multiplicative interactions between cells. In particular, Ωm2 represents the
connectivity required for each cell to multiply each pair of their inputs (Fig. 1B+C
bottom row), with the synapse essentially acting as a coincidence detector. Higher
order synapses would behave similarly but with three or more coincident spikes
(Supp. Fig. S1).  While these higher order interactions are unlikely to be biologically
feasible, lower order multiplicative interactions may indeed be possible in biology,
and have been hypothesized before (Koch and Poggio,1992), as we will discuss
further in the discussion. In principle, increasingly complex nonlinear dynamics may
be implemented through the inclusion of higher-order terms in eq. (5) (Ωmd for d>2),
though this flexibility comes with increased cost on the number of synapses and
neural interactions. In a later section we will show how to avoid interactions beyond
pair-wise synapses, and we will derive the expected number of connections for each
type of synapse.

Compared to linear dynamics, multiplicative synapses enable nonlinear computations
such as AND gates (Fig. 1C bottom). Overall, the above derivation demonstrates that
the presence of multiplicative synapses arises naturally in mSCNs from extending the
spike coding framework to polynomial dynamical systems.

● 4.2: To prove that higher-order multiplicative synapses are not strictly necessary, you
stack two networks together that can compute third-order multiplications with
pairwise interactions.

○ I think this would make strong predictions about the brain’s connectivity
structure that might be visible in one way or another. Is there evidence for
such a hypothesis?

○ In the example you show, there is no difference between triplet and no triplet
suggesting that both have the very same performance. However, I guess
there are examples where the triplet (or even higher-order multiplicative
synapse) is necessary to achieve a reasonable performance. It would be nice
if this could be discussed more so that the reader gets a better understanding
of the limitations.

We are intrigued by the reviewer’s suggestion that stacking networks together for
higher-order multiplications could lead to specific predictions. While we feel a
detailed exploration of these points is out of the scope of the paper, we attempt to
address both of them at a high level with a new paragraph in the discussion, again
repeated here for convenience:

Finally, while higher order multiplicative interactions are increasingly difficult to
implement biologically, we demonstrated that by stacking networks with lower-order
interactions one can achieve the same computations. This makes the concrete
prediction that the connectivity between areas should be of the same dimensionality



as the signal being transferred. This does indeed seem to be the case to some
degree, with the communication between some areas being low-dimensional
(Semedo et al., 2019). There is also a likely limit to how many networks can be
effectively stacked in this way to perform higher-order interactions, as each stacked
network introduces a delay.

● Section 5 needs clarification: This section is very important but is not explained well (I
feel it should be extended significantly).

○ Also, Fig. 4 is not completely clear. Dashed lines are derived from theory!?
Refer to the eq. In the methods section. Solid lines are mean derived from the
simulations?

○ It would be nice to show performances (maybe for the example shown before)
in the case when no one-to-one connectivity is used. This would make it
easier for the reader to evaluate how well the approach works even in more
biologically plausible regimes.

○ The authors use phrases like „signal dimensions“ or „dynamical system
density“ for the very first time in section 5. Even though it becomes clear over
time, it would be nice, if these terms could be introduced properly.

We agree that this section of the paper suffered from a lack of clarity, and have now
comprehensively reworded and expanded it. In particular, we have moved some
detailed parts from the methods section (as also suggested by Reviewer 2), which
we think has improved the overall intelligibility. We have also added a new analysis
showing how connectivity density relates to network performance (Supp.Fig.S2C).

Minor

● In abstract: „Synapse type“. For readers that are not familiar with SCN, this might be
misleading. They could think of excitatory vs. inhibitory, and not fast, slow etc. as you
have in mind
We have reworded much of the abstract, among other parts of the text, to clarify this
point.

● Page 3, (b): „iff“
This is an abbreviation for if and only if -- we have kept it in the text, but can change it
if the reviewer thinks it is too unclear.

● The last row in Fig. 1B is very nice, but to make sure that the reader does understand
the general concept, an illustration beyond m=2 could be helpful.
This is a great suggestion, and we have added a new supplementary figure (S1)
illustrating higher-order interactions, and refer to it from the legend of Fig 1 and the
main text (repeated here):
Higher order synapses would behave similarly but with three or more coincident
spikes (Supp. Fig. S1).

● Below Eq. 7 —> could you please briefly state how you ended up with equation
(log2(g)-1) support networks
A footnote has been added here to explain this.

● In Eq. (8): Is the Heaviside step function hidden in the sum (the exponentials should
not have an impact before the spike was emitted) … sorry it is late and I am tired. ;)



We believe that it is not necessary to include a Heaviside function considering how
we defined the sum (by writing t_ki<t).

● You introduce the Kronecker product on page 16 but it has been used throughout the
Methods section. It would make sense to restructure the Methods part and introduce
this important concept before.
We have now given the Kronecker product its own methods subsection, and refer to
it in the text.

● Method section 7.7 needs more clarification (and please also use equation numbers
here). Especially, the equations E(F), E(S), and E(Q) need more explanations.
We have clarified the equations and text, in addition to moving some of this content
to the main text in section 5.

● Page 5: you reference to Fig. 1C, D —> there is no D
● Page 6: your reference to Fig. 2Aiii (see second paragraph, end) but mean 2Aiv
● Page 6: your reference to Fig. 2Biii (see third paragraph, middle) but mean ii
● Page 10 (before Discussion): You refer to FIg. 3 but mean Fig. 4
● Before Eq. (14) in the text: should be - D_i^T y = … )
● Before 7.3: You refer to Supp. Fig. 1 but you mean 2
● First line page 17: the
● Before Eq. 23: double the

We thank the reviewer for catching these mistakes! They have all been fixed.

Review by anonymous reviewer, 2021-06-02 13:10

In this manuscript, the authors provide an important theoretical contribution to the
understanding of spiking neural networks, by describing mathematically how to design
neural networks to implement any type of polynomial dynamics. The study is based on
previous work on the spike coding framework (Boerlin et al. 2013), initially based on
generating linear dynamical systems, that has been then extended in several publications to
account for different biological constraints and non-linear dynamics. In this study, the authors
explore an alternative top-down extension of the framework to generate non-linear dynamics
based on multiplicative synapses. After defining the mathematical framework, the study
illustrates the application of the method to a standard benchmark: the chaotic dynamics of a
Lorenz attractor. Next, they show an alternative implementation, based on a hierarchical
multi-network architecture, that can implement polynomial dynamics using only pairwise
multiplicative synapses. Finally, they consider how the top-down assumptions of the model
relate to biological constraints in brain wiring, and compare their advantages and
disadvantages with respect to other existing methods. This effort in the discussion is
necessary, since how is the main premise of this theoretical work -multiplicative synapses-
remains an open question.

This work is quite technical, and builds on previous theoretical work. Nevertheless, the
authors make an effort to explain previous findings and make this study accessible to
readers familiar with standard methods in computational neuroscience methods, but not
necessarily with the spike coding framework. The findings of the study constitute a solid
advancement in the understanding of computations in spiking networks, and open new paths
for potential impactful applications in the field.



Comments

● Introduction
In the second sentence of the first paragraph, it remains unclear to me why the
implementation of non-linear dynamics through the recurrent connectivity, leads to
(“accordingly”) low-dimensional internal representations. I believe this statement
makes sense based on the assumption that the implemented non-linear dynamics
are low-dimensional. If this is the case, I would suggest to specify it. Otherwise, these
two ideas (non-linear computation implemented by recurrent wiring and
low-dimensional representations) should be presented separately.

This is a very good point, which we agree was not clear in the original version. We
have now rewritten the sentence as follows:

One promising hypothesis is that networks represent relatively low-dimensional
signals (compared to network size) (Cunningham and Yu, 2014; Keemink and
Machens, 2019), and in this lower-dimensional space implement nonlinear dynamical
systems through recurrent connectivity (Eliasmith,2005; Mante et al., 2013; Sussillo,
2014; Abbott et al., 2016; Barak, 2017; Mastrogiuseppeand Ostojic, 2018).

● 2 Spike coding networks
It seems that there are missing references to some of the panels in Fig 1 in the main
text (check as well for other figures). Fig 1A for example is not referred to anywhere.
It could be included in Section 2.1.

We now cite Fig 1A at the beginning of Section 2.1. Furthermore we double-checked
other figure references to ensure that all were cited accordingly in the main text.

● In Section 2.2, I suggest to give a more precise intuition about why and what is “fast”
in fast connections and what is “slow” in slow connections. Although this terminology
is commonly used in the spike coding framework, it would help understanding the
difference between Fig 1B top and middle, which is currently not commented in the
main text.
We thank the reviewer for this suggestion. This has now been clarified as follows:

where so-called “fast” connections Ωf=−DTD keep the error constrained on a short
time-scale (Fig. 1B+C top row), and “slow” connections Ωs=DT(A+λI)D implement
the dynamical computation using the filtered spikes r (Fig. 1B+C middle row).
Here “fast” and “slow” refer to the rise-time of the synaptic PSPs (Fig. 1B). While
technically an approximation, this implementation works well in practice and can
closely reproduce a given linear dynamical system (Fig. 1B+C middle row)

● If I understood correctly, the middle row in Fig 1B+C has both fast and slow
synapses.
This is correct. We clarify this at the end of the figure legend as:
For both linear and nonlinear dynamics the fast synapses are also required.



● Also, there is no reference to Fig1C middle in section 2.2.
This has been fixed: we now reference figure 1C properly in Sections 2.2 and 3.

● 3 Nonlinear dynamics
In Section 2.3, I suggest highlighting the fact that the Lorenz attractor is based on
pairwise multiplications of the state-variables, since this concept is useful for the rest
of the paper.
Good point! We now clarify that the multiplications in the Lorenz attractor are
pairwise:
Notably, this system contains pairwise multiplicative terms of the state-variables,
thereby making it a polynomial (and nonlinear) dynamical system.

● 4 Higher-order polynomials
Reference to the Supp. Fig. 2 needs more context. Since Supp. Fig 2 does not show
any combination of networks, it is worth explaining in a sentence why it is relevant
here.
To address this we adjusted the end of Section 4.1:
We illustrate the resulting network and its inputs and outputs in Supp.~Fig.~S3.

As well as the beginning of Section 4.2:
Now, the combination of a standard mSCN (eq. 5) with a network which calculates
the square of its inputs (Supp. Fig. S3), results in a system with the ability of
computing third-order multiplications with only pairwise (second-order) synapses
(Fig. 3A). Notably, one network computes the pairwise multiplications, and the other
computes the desired third-order dynamic equation using another pairwise
multiplication of the squared network output (x⊗x) and x.

● In Section 4.3 and corresponding Fig. 3, it remains unclear whether the double
pendulum implementation corresponds to the approximated dynamics (where sin
theta = theta) for all lines, or whether this approximation is used only for the spike
coding networks.
All implementations of the double pendulum use the approximated dynamics. We
have now clarified this in the text as follows:
We implemented the first-order approximated double pendulum system in three
distinct ways.

● 5  On the number of required connections
It is currently hard to understand this section and the content of Fig. 6, just by reading
the caption and the main text, without looking at the methods. Some sentences
would require more explanations (“The fast connections only depend on the density
of the decoder, and any two neurons are connected whenever they share a
decoding-dimension”). I suggest moving part of the Methods 7.7 into the main text.
We agree with the reviewer that this section specifically lacked sufficient explanation,
as the other reviewer also pointed out. We have significantly updated and expanded
this section, and hope that it is now clear enough.

● Discussion, Section 6.2



Reference to Fig. 3 should be Fig. 4, I believe.
This has been fixed.

● Methods
I suggest including Section 7.3 before Section 7.2. The Kronecker product is first
explained in Section 7.3, although already used in Section 7.2. Explain what Section
7.2 wants to calculate before starting calculating (introduce matrix W, for example).
included before S the Methods. In
We have now given the Kronecker product its own section, which we hope addresses
this point.

Misc errors
● I believe matrix D should be in bold in Eq. 3
● The colors of the two neurons in Figure 1 look to me red and orange, instead of red

and green as indicated in the caption.
● Section 3.1:  Reference to Fig. 2Aiii at the end of the second paragraph should

actually be Fig. 2A iv ?
● Section 3.1: the network simulation still display the… -> the network simulation still

displays the
● Section 3.1: (Fig. 2top) -> (Fig. 2 top)
● Section 3.2: high pair-wise connectivity -> dense pair-wise connectivity? high-density

pair-wise connectivity?
● Methods 7.3: “among the other properties, the one that will be used is…”->

(suggestion) We use the mixed-product property
● Methods 7.5: nonliarity -> non-linearity or nonlinearity
● Methods 7.7.2: the second part-> the second term.
● So the interesting part is… -> We focus on the first term …

We thank the reviewer for the thorough reading of the text. All of these mistakes have
been corrected according to the reviewer's suggestions.


