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Abstract

In this paper I report the discovery of neurons which showed a neural correlate with ongoing fluctuations of
Bitcoin and Ethereum prices at the time of the recording. I used the publicly available dataset of Neuropixel
recordings by the Allen Institute to correlate the firing rate of single neurons with cryptocurrency price. Out
of ∼40.000 recorded single neurons, ∼70% showed a significant correlation with Bitcoin or Ethereum prices.
Even when using the conservative Bonferroni correction for multiple comparisons, ∼35% of neurons showed
a significant correlation, which is well above the expected false positive rate of 5%. These results were due
to ‘nonsense correlations’: when correlating two signals which both evolve slowly over time, the chances of
finding a significant correlation between the two are much higher than when comparing signals which lack this
property.

Introduction

In a typical neuroscience experiment we record a
group of neurons, find neurons which show a neural
correlate of a behavioral variable of interest, and
restrict further analyses to this neuronal subset. The
central assumption in this approach is that the neural
correlate under scrutiny is not merely a statistical
anomaly but a neural code that the brain actually
uses. Often this is true, but there are cases in which
this can lead to false conclusions. For example, when
correlating neural activity with a behavioral variable
which slowly evolves over time. Both neural activity
and such a variable show temporal auto-correlations
and are therefore very likely to result in a ‘nonsense
correlation’ [1].

This statistical pitfall can result in the drawing of
erroneous conclusions, as was argued to be the case
when describing action-value coding neurons in the
striatum [2]. It can also lead to amusing spurious
findings: it was shown that a daily average of
population activity in the rat motor cortex correlated
with day-to-day fluctuations of stock prices. The
temporal auto-correlation in the signals even allowed
neural activity of these neurons to be used to predict
the stock value of the next day [3].

Here, I aimed to illustrate this statistical pitfall
at a large scale and investigated several of the
proposed methods to circumvent the issue of nonsense
correlations in the brain. I correlated spiking
activity from tens of thousands of neurons in the
mouse brain with ongoing fluctuations in the price
of Bitcoin and Ethereum, the two most well-known
cryptocurrencies. I found that ∼70% of neurons
showed a significant correlation with cryptocurrency
price at the time of the recording. This was not merely

a multiple comparisons problem because when using
the conservative Bonferonni correction, still a large
fraction of neurons showed a significant correlation.
Two methods, proposed by Kenneth Harris [1, 4], were
successful in reducing the false alarm rate to acceptable
levels. When analysing signals which slowly evolve over
time, one should be aware of these statistical pitfalls
and use the proper control analyses to correct for them.

Methods

I used the publicly available Visual Coding -
Neuropixels dataset [5] provided by the Allen Institute
as part of the Brain Observatory [6]. Briefly,
spiking activity was recorded in posterior cortical and
subcortical structures using high-density Neuropixel
silicon probes. The dataset contained spiking activity
of 40.010 neurons recorded in 58 mice which were
head-fixed and passively viewing visual stimuli.

Single neuron activity was correlated with ongoing
fluctuations in cryptocurrency price by binning
each neuron’s spike train in 60 second bins and
calculating the spike rate in spikes per second
per time bin. The concurrent price of Bitcoin
and Ethereum was collected using the Python
library Historic-Crypto (https://pypi.org/project/
Historic-Crypto/). Cryptocurrency prices were
defined as the opening bid in 60 second bins starting at
the exact start time and date of the recording. Spike
rates and cryptocurrency prices were correlated using
Pearson correlation.

Results

Many neurons showed a strong correlation in their
firing rate with the price of Bitcoin or Ethereum at
the time of the recording (Figure 1A). All plots of

https://pypi.org/project/Historic-Crypto/
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Introduction

In a typical neuroscience experiment we record a
group of neurons, find neurons which show a neural
correlate of a behavioral variable of interest, and
restrict further analyses to this neuronal subset. The
central assumption in this approach is that the neural
correlate under scrutiny is not merely a statistical
anomaly but a neural code that the brain actually
uses. Often this is true, but there are cases in which
this can lead to false conclusions. For example, when
correlating neural activity with a behavioral variable
which slowly evolves over time. Both neural activity
and such a variable show temporal auto-correlations
and are therefore very likely to result in a ‘nonsense
correlation’ [1].

This statistical pitfall can result in the drawing of
erroneous conclusions, as was argued to be the case
when describing action-value coding neurons in the
striatum [2]. It can also lead to amusing spurious
findings: it was shown that a daily average of
population activity in the rat motor cortex correlated
with day-to-day fluctuations of stock prices. The
temporal auto-correlation in the signals even allowed
neural activity of these neurons to be used to predict
the stock value of the next day [3].

Here, I aimed to illustrate this statistical pitfall
at a large scale and investigated several of the
proposed methods to circumvent the issue of nonsense
correlations in the brain. I correlated spiking
activity from tens of thousands of neurons in the
mouse brain with ongoing fluctuations in the price
of Bitcoin and Ethereum, the two most well-known
cryptocurrencies. I found that ∼70% of neurons
showed a significant correlation with cryptocurrency
price at the time of the recording. This was not merely

a multiple comparisons problem because when using
the conservative Bonferonni correction, still a large
fraction of neurons showed a significant correlation.
Two methods, proposed by Kenneth Harris [1, 4], were
successful in reducing the false alarm rate to acceptable
levels. When analysing signals which slowly evolve over
time, one should be aware of these statistical pitfalls
and use the proper control analyses to correct for them.

Methods

I used the publicly available Visual Coding -
Neuropixels dataset [5] provided by the Allen Institute
as part of the Brain Observatory [6]. Briefly,
spiking activity was recorded in posterior cortical and
subcortical structures using high-density Neuropixel
silicon probes. The dataset contained spiking activity
of 40,010 neurons recorded in 58 mice which were
head-fixed and passively viewing visual stimuli.

Single neuron activity was correlated with ongoing
fluctuations in cryptocurrency price by binning each
neuron’s spike train in 60 second bins and calculating
the spike rate in spikes per second per time bin. As
a second method of defining neuronal activity, pseudo
trials were generated by uniformly drawing 500 trial
onset times from the entire length of the recording
session. Subsequently, trials were defined as 300 ms
windows after the onset times and spike counts were
obtained for these time windows. The concurrent
price of Bitcoin and Ethereum was collected using the
Python library Historic-Crypto (https://pypi.org/
project/Historic-Crypto/). Cryptocurrency prices
were defined as the opening bid in 60 second bins
starting at the exact start time and date of the
recording. Spike rates and cryptocurrency prices were
correlated using Pearson correlation.
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Figure 1: Neural correlate of cryptocurrency price. (A) Example neurons from four different brain regions which showed a
strong correlation with ongoing price fluctuations of Bitcion (top) and Ethereum (bottom). Spike rate and cryptocurrency
price was binned in 60 second bins. (B) Distribution of Pearson correlation coefficients was centered at zero but showed
a large fraction of neurons that were positively and negatively correlated with cryptocurrency price. Correlation with a
vector of random numbers was added as a control. (C) A high percentage of neurons showed a significant correlation
with Bitcoin or Ethereum price (p < 0.05), in contrast only 4.9% of neurons were correlated with the random vector,
close to the Type I false positive rate of 5% (grey dotted line).

neurons with a correlation coefficient (r) of > 0.85 can
be found here: https://figshare.com/articles/

figure/Crypto-coding_neurons/14445480. The
distribution of correlation coefficients between firing
rate and cryptocurrency price over all neurons was
very broad and included very strong correlations.
To investigate whether any property of these price
fluctuations made them particularly susceptible to
spurious correlations, a vector with random numbers
(a uniform random draw between 100 and 200) was
correlated with the firing rate traces as a control; the
random vector was only weakly correlated with firing
rates (Figure 1B). For a remarkably large percentage of
neurons, the correlation with cryptocurrency price was
significant (Bitcoin: 70.5%, Ethereum: 68.8%) while
the correlation with the random vector only resulted in
4.9% significantly correlated neurons which was around
the expected Type I error rate of 5% (Figure 1C).
These spurious correlations could not be controlled
for by correcting for multiple testing. When using
the conservative Bonferroni correction, a large fraction
of neurons still showed a significant correlation with
crypto price (Bitcoin: 34.7%, Ethereum: 33.9%).

I investigated whether these spurious correlations
could be controlled for using different methods
to determine whether neurons were significantly
correlated to cryptocurrency price. A commonly used
method to determine significance is to shuffle one
of the traces a large number of times and calculate

the correlation coefficient for every shuffling iteration.
This null-distribution of correlation coefficients is
subsequently used to determine significance; the
p-value is defined as the fraction of times the
correlation of the original signal was stronger than the
shuffled traces. This approach still resulted in 41.5% of
significantly correlated neurons (Figure 2).

Next, I used two methods proposed by Kenneth
Harris [1] which are specifically designed to control
for temporal auto-correlations: the session permutation
and the linear shift method. In the session permutation
method one uses the behavior from other sessions
to generate a null-distribution. Typically, this
requires access to a large number of other sessions
recorded under the same conditions. In the case of
cryptocurrency price it is straightforward to query a
price vector of equal duration from a different point
in time. To generate a null-distribution, I took 1000
price vectors starting at random time points between
2019 and 2020, and correlated these vectors with the
spiking rate of each neuron. A p-value was defined
as the fraction of times the correlation with the price
vector at the time of the recording was higher than
the correlation with the price vectors from different
times. This resulted in 5.6% significant neurons which
was close to the desired false positive rate of statistical
testing.

The linear shift method [4] works by defining
a time window in the middle of the session and
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The session permutation method was implemented
by querying price vectors of equal duration from
different points in time. To generate a null-distribution,
I took 1000 price vectors starting at random time points
between 2019 and 2020, and correlated these vectors
with the spiking rate of each neuron using Pearson
correlation. A p-value was defined as the fraction
of times the Pearson correlation coefficient of the
correlation between the neural activity and the price
vector at the time of the recording was higher than the
correlation with the price vectors from different times.

To perform the linear shift method, a time window
of 50 minutes in the middle of the session was defined
in which firing rate was correlated with cryptocurrency
price using Pearson correlation. Subsequently, the
window with the to-be-correlated metric is shifted
throughout the session such that the neural activity
is now correlated with the metric from a different
part of the session. In this case, the null-distribution
was generated by shifting the price window to earlier
and later time points in the session in one minute
steps while keeping the firing rate window the same.
The p-value was defined as the fraction of times the
correlation of the original price vector was stronger
than the price vectors from shifted time windows.

Distinct temporal components were filtered out of
the cryptocurrency price fluctuations using a 4th order
Butterworth filter. Three different filters were used: a
high pass filter which filtered out anything below 0.3

cycles per hour (cph), a band stop filter which took
out frequencies between 0.3 and 2 cph and a low pass
filter which removed anything above 2 cph. Each of
these filtered price traces were subsequently correlated
to binned spike trains of all neurons as described above.

Results

Many neurons showed a strong correlation in their
firing rate with the price of Bitcoin or Ethereum at
the time of the recording (Figure 1A). All plots of
neurons with a correlation coefficient (r) of > 0.85 can
be found here: https://figshare.com/articles/

figure/Crypto-coding_neurons/14445480. The
distribution of correlation coefficients between firing
rate and cryptocurrency price over all neurons was
very broad and included very strong correlations.
To investigate whether any property of these price
fluctuations made them particularly susceptible to
spurious correlations, a vector with random numbers
(a uniform random draw between 100 and 200) was
correlated with the firing rate traces as a control; the
random vector was only weakly correlated with firing
rates (Figure 1B). For a remarkably large percentage of
neurons, the correlation with cryptocurrency price was
significant (Bitcoin: 70.5%, Ethereum: 68.8%) while
the correlation with the random vector only resulted in
4.9% significantly correlated neurons which was around
the expected Type I error rate of 5% (Figure 1C).
These spurious correlations could not be controlled
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Figure 2: Methods to correct for nonsense correlations.
Shuffle: shuffling the cryptocurrency price traces to de-
termine significance did not reduce the false positive rate
to the desired level of 5%. Permutation: constructing a
null-distribution of correlations using 1000 price traces from
other time points worked well to bring the false positive
rate down to ∼5%. Linshift : using the linear shift method
whereby a window of time points is shifted through the ses-
sion to generate a null-distribution also reduced the amount
of significantly correlated neurons to the desired level.

correlating neural activity in this window with a metric
of interest at that time. Subsequently, the window with
the to-be-correlated metric is shifted throughout the
session such that the neural activity is now correlated
with the metric from a different part of the session. In
this case, I used a window of 50 minutes in the middle of
the session to correlate firing rate with cryptocurrency
price, the null-distribution was generated by shifting
the price window to earlier and later time points
in the session in one minute steps while keeping
the firing rate window the same. The p-value was
defined as the fraction of times the correlation of
the original price vector was higher than the price
vectors from shifted time windows. This method
of controlling for nonsense correlations was slightly
more conservative than the permutation method and
resulted in 4.2% of significantly correlated neurons.
Using these methods, a false discovery rate (FDR)
correction of p-values sufficed to almost completely
eliminate any false positives (permutation: 0.07%,
linear shift: 0%).

Discussion

Why did such a large fraction of neurons show
a significant correlation with crytocurrency price?
We can rule out that neurons in the mouse brain
actually encoded cryptocurrency price, as they did not
have access to this information during the recording.
Moreover, mice almost certainly lack the capacity
to read and interpret complex financial data. The
most likely explanation is that firing rates and
cryptocurrency prices slowly evolve over time and
the time constant of these temporal auto-correlations
happened to be similar. Because the two signals
that are being correlated to one another share this

statistical property, the chances of finding a significant
correlation between the two are much higher than
the usual false positive rate of 5%. Furthermore,
the extremely large number of neurons in the dataset
allowed for strong correlations to be observed purely
by chance. Because of the temporal auto-correlations
in both signals, conventional methods like multiple
comparisons corrections failed to reduce the false
positive rate to acceptable levels.

When analysing signals that slowly evolve over time,
like neural activity, one should take the utmost care to
avoid the pitfall of ‘nonsense correlations’ [1]. Although
this issue is widely discussed in other scientific fields, its
importance is only recently gaining traction in systems
neuroscience. This paper serves as a cautionary tale
that the potential confound of nonsense correlations is
to be taken seriously. When not properly controlled
for, it can lead to the misleading conclusion that 70%
of neurons in the mouse brain encode cryptocurrency
prices.

Data and code availability

The Visual Coding - Neuropixels dataset from the Allen
Brain Institute: https://allensdk.readthedocs.

io/en/latest/visual_coding_neuropixels.html.
The code used to analyse the dataset and generate
the figures: https://github.com/guidomeijer/

crypto-correlations
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Figure 2: Methods to correct for nonsense correlations.
Shuffle: shuffling the cryptocurrency price traces to de-
termine significance did not reduce the false positive rate
to the desired level of 5%. Permutation: constructing a
null-distribution of correlations using 1000 price traces from
other time points worked well to bring the false positive
rate down to ∼5%. Linshift : using the linear shift method
whereby a window of time points is shifted through the ses-
sion to generate a null-distribution also reduced the amount
of significantly correlated neurons to the desired level.

for by correcting for multiple testing. When using
the conservative Bonferroni correction, a large fraction
of neurons still showed a significant correlation with
crypto price (Bitcoin: 34.7%, Ethereum: 33.9%).

Binning neuronal activity in 60 second bins
generally does not happen in neuroscience. Therefore,
I generated 500 pseudo trials with a duration of 300
ms, which is a commonly used time window, and
obtained the spike counts of all neurons for these
time windows. When correlating the spiking activity
during these trials with the cryptocurrency price at
that time, I still found a large fraction of significant
neurons (Bitcoin: 60.1%, Ethereum: 59.2%; Bonferroni
corrected: Bitcoin: 24.3%, Ethereum: 23.8%).

I investigated whether these spurious correlations
could be controlled for using different methods
to determine whether neurons were significantly
correlated to cryptocurrency price. A commonly used
method to determine significance is to shuffle one
of the traces a large number of times and calculate
the correlation coefficient for every shuffling iteration.
This null-distribution of correlation coefficients is
subsequently used to determine significance; the
p-value is defined as the fraction of times the
correlation of the original signal was stronger than the
shuffled traces. This approach still resulted in 41.5% of
significantly correlated neurons (Figure 2).

Next, I used two methods proposed by Kenneth
Harris [1] which are specifically designed to control
for temporal auto-correlations: the session permutation
and the linear shift method. In the session permutation
method one uses the data from other sessions,
recorded under the same conditions, to generate a
null-distribution from which a p-value can be derived.
This resulted in 5.6% significant neurons which was

close to the desired false positive rate of statistical
testing.

The linear shift method [4] works by defining a time
window in the middle of the session and correlating
neural activity in this window with a metric of interest
at that time, this window is then shifted throughout the
session to generate a null-distribution. This method
of controlling for nonsense correlations was slightly
more conservative than the permutation method and
resulted in 4.2% of significantly correlated neurons.
Using these methods, a false discovery rate (FDR)
correction of p-values sufficed to almost completely
eliminate any false positives (permutation: 0.07%,
linear shift: 0%).

What property of cryptocurrency price fluctuations
was most important in eliciting these strong nonsense
correlations? Cryptocurrency prices evolve over time
at several different time scales (Figure 3A). Generally,
there is a slow trend over time with fast price
fluctuations on top. To investigate which of these
components was the most important driver of nonsense
correlations I filtered out the slow component (High
pass), the medium component (Band stop) and the
fast component (Low pass; Figure 2B) and correlated
each of these filtered traces with the neural activity.
Filtering out the slowly evolving trends resulted in
a large drop of significantly correlated neurons while
filtering out the medium and fast components resulted
in a moderate increase of neurons that were correlated
to these traces (Figure 3B). This suggests that the slow
trends in cryptocurrency prices are the main driver of
nonsense correlations.

Discussion

Why did such a large fraction of neurons show
a significant correlation with crytocurrency price?
We can rule out that neurons in the mouse brain
actually encoded cryptocurrency price, as they did not
have access to this information during the recording.
Moreover, mice almost certainly lack the capacity
to read and interpret complex financial data. The
most likely explanation is that firing rates and
cryptocurrency prices slowly evolve over time and
the time constant of these temporal auto-correlations
happened to be similar. Because the two signals
that are being correlated to one another share this
statistical property, the chances of finding a significant
correlation between the two are much higher than
the usual false positive rate of 5%. Specifically,
the slow trends in cryptocurrency prices resembled
neuronal activity patterns because taking out these
slow trends strongly reduced nonsense correlations.
Furthermore, the extremely large number of neurons
in the dataset allowed for strong correlations to be
observed purely by chance. Because of the temporal
auto-correlations in both signals, conventional methods
like multiple comparisons corrections failed to reduce
the false positive rate to acceptable levels.

When analysing signals that slowly evolve over time,
like neural activity, one should take the utmost care to
avoid the pitfall of ‘nonsense correlations’ [1]. Although
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Figure 3: Influence of different temporal components on nonsense correlations. (A) Example cryptocurrency price of
Ethereum over a time of five hours. (B) The price vector from A, filtered in three different ways: High pass (0.3 cycles
per hour), Band stop (0.3 - 2 cph) and Low pass (2 cph). (C) Filtering out the slow component of the cryptocurrency
price fluctuations resulted in a large decrease in the percentage of significantly correlated neurons. Band stop and Low
pass filtered traces resulted in slightly more correlated neurons.

this issue is widely discussed in other scientific fields, its
importance is only recently gaining traction in systems
neuroscience. This paper serves as a cautionary tale
that the potential confound of nonsense correlations is
to be taken seriously. When not properly controlled
for, it can lead to the misleading conclusion that 70%
of neurons in the mouse brain encode cryptocurrency
prices.
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