
Nonlinear computations in spiking neural networks
through multiplicative synapses

Michele Nardin,1,∗ James W Phillips, William F Podlaski,2 Sander W Keemink2,∗†
::

2,3
:

1 Institute of Science and Technology Austria, Klosterneuburg, Austria
2Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal

::::::::

3Artificial
:::::::::::
Intelligence,

:::::::
Donders

:::::::
Institute

:::
for

::::::
Brain,

::::::::
Cognition

::::
and

:::::::::
Behaviour,

::::::::
Radboud

:::::::::
University,

:::::::::
Nijmegen,

:::
the

::::::::::
Netherlands

July 31, 2021

Abstract

The brain efficiently performs nonlinear computations through its intricate net-
works of spiking neurons, but how this is done remains elusive. While recurrent
spiking networks implementing linear computations

:::::
many

::::::::
nonlinear

:::::::::::
computations

:::
can

::
be

:::::::::::
implemented

:::::::::
successfully

::
in

::::::
spiking

::::::
neural

::::::::
networks,

:::
this

:::::::
requires

:::::::::
supervised

:::::::
training

:::
and

:::
the

::::::::
resulting

:::::::::::
connectivity

::::
can

:::
be

::::
hard

:::
to

::::::::
interpret.

:::
In

::::::::
contrast,

::::
the

:::::::
required

::::::::::
connectivity

:::
for

::::
any

:::::::::::
computation

::
in

:::
the

:::::
form

::
of
::
a
::::::
linear

:::::::::
dynamical

::::::
system

:
can be

directly derived and easily understood (e.g., in
:::::::::
understood

::::
with

:
the spike coding net-

work framework), the connectivity required for nonlinear computations can be harder
to interpret, as they require additional non-linearities (e.g., dendritic or synaptic)
weighted through supervised training

:::::
(SCN)

::::::::::
framework.

::::
The

::::::::
resulting

::::::::
networks

:::
also

::::
have

:::::::::
biologically

:::::::
realistic

:::::::
activity

::::::::
patterns

:::
and

::::
are

:::::
highly

::::::
robust

::
to

::::
cell

:::::
death. Here

we extend the spike coding framework to
:::
SCN

:::::::::
framework

:::
to

:::::::
directly implement any

polynomial dynamical system
:
,
::::::
without

::::
the

::::
need

:::
for

:::::::
training. This results in networks

requiring multiplicative synapses
:
a
::::
mix

::
of

::::::
synapse

:::::
types

:::::
(fast,

::::
slow,

::::
and

::::::::::::
multiplicative),

which we term the multiplicative spike coding network (mSCN). We demonstrate how

:::::
Using

:::::::
mSCNs,

:::
we

:::::::::::
demonstrate

::::
how

::
to

:::::::
directly

::::::
derive the required connectivity for

several nonlinear dynamical systemscan be directly implemented in mSCNs, without
training. We also show how to carry out higher-order polynomials with coupled networks
that use only pair-wise multiplicative synapses, and provide expected numbers of con-
nections for each synapse type. Overall, our work provides an alternative

::::::::::
demonstrates

:
a
:::::
novel method for implementing nonlinear computations in spiking neural networks,

while keeping all the attractive features of standard SCNs (such as robustness, irregular
and sparse firing

:::::::::
robustness,

:::::::
realistic

:::::::
activity

:::::::
patterns, and interpretable connectivity).

Finally, we discuss the biological plausibility of our approach, and how the high accuracy
and robustness of the approach may be of interest for neuromorphic computing.

1 Introduction
A central quest in neuroscience is to understand how the brain’s neural networks are
able to perform the computations needed to solve complex tasks. One promising hypoth-
esis has been that networks

:
is

:::::
that

::::::::
networks

:::::::::
represent

:::::::::
relatively

:::::::::::::::
low-dimensional

::::::
signals

:::::::::
(compared

:::
to

:::::::
network

::::
size)

::
(Cunningham and Yu, 2014; Keemink and Machens, 2019)

:
,
:::
and

::
in

::::
this

::::::::::::::::
lower-dimensional

:::::
space

:
implement nonlinear dynamical systems through recurrent

∗Correspondence: mnardin@ist.ac.at; sander.keemink@donders.ru.nl
†Current address - Department of Artificial Intelligence, Donders Institute for Brain, Cognition and

Behaviour, Radboud University, Nijmegen, the Netherlands

1

connectivity (Eliasmith, 2005; Mante et al., 2013; Sussillo, 2014; Abbott et al., 2016; Barak,
2017; Mastrogiuseppe and Ostojic, 2018), and accordingly have low-dimensional internal
representations (Cunningham and Yu, 2014; Keemink and Machens, 2019). The resulting
networks usually achieve nonlinear computation through a basis-function approach: non-
linearities at various levels (neural (Jaeger, 2001; Maass et al., 2002; Eliasmith, 2005; Mas-
trogiuseppe and Ostojic, 2018), synaptic (Thalmeier et al., 2016), or dendritic (Thalmeier
et al., 2016; Alemi et al., 2018; Abbott et al., 2016)) are weighted to achieve a given compu-
tation through supervised training. The task of achieving nonlinear computation is then
off-loaded to the basis-functions and the training method, and as a result the link between
network connectivity and computation may be unclear. Additionally (unlike real biological
systems), the resulting models do not often

::::::
always exhibit robustness to perturbations

(Calaim et al., 2020)
::::::::::::::
(Li et al., 2016), and suffer from unrealistic activity levels (e.g. Elia-

smith et al. (2012)) compared to expected levels (Barth and Poulet, 2012). In contrast,
the recurrent connectivity required for any linear dynamical system can be directly defined
(i.e., without any training) for a spiking neural network through the theory of spike coding
networks (SCNs) (Boerlin et al., 2013). SCNs are consistent with many features from
biology, such as sparse and irregular activity, robustness to perturbations (such as cell death)
(Barrett et al., 2016; Calaim et al., 2020), and excitation/inhibition-balance (Boerlin et al.,
2013; Denève and Machens, 2016). Could we use a similar analytical approach to introduce
nonlinear computations?

In SCN theory, fast recurrent connections are used to efficiently and accurately maintain a
stable internal representation. Any linear dynamical system can then be directly implemented
through the addition of slower recurrent connections (Boerlin et al., 2013), which will drift
the internal representation according to the desired dynamics. While nonlinear dynamics
have previously been implemented in SCNs, this was achieved through the aforementioned
basis-function approach (Abbott et al., 2016; Thalmeier et al., 2016; Alemi et al., 2018). Here
we extend the original SCN derivation for linear dynamics (Boerlin et al., 2013), by directly
deriving the connectivity required for any polynomial dynamical system. The resulting
networks require an additional set of slow connections with multiplicatively interacting
synapses, and we thus term our model multiplicative SCNs, or mSCNs.

We demonstrate the capability of mSCNs through a precise implementation of the
Lorenz system, as well as a second order

::
an

:
implementation of a double pendulum. While

polynomial systems can in principle approximate any other system (De Branges, 1959),
this can quickly become infeasible, as higher-order polynomial systems require higher-order
synapses (pair-wise, triplets, quadruplets, etc.), resulting in a dense and complicated all-to-all
connectivity structure. We address the need for higher-order synapses by demonstrating
how higher-order computations can be approximated by successive network layers with
solely pair-wise synapses. Additionally, we demonstrate that the assumption of all-to-all
connectivity can be loosened if each neuron is selective

:::
only

:
for a subset of the relevant

variables for the computation.
Our theory of mSCNs harnesses all the appealing properties of previous SCN imple-

mentations (in particular robustness to cell-death and irregular spiking activity), but now
includes a directly derivable and more interpretable connectivity structure for a large class
of nonlinear dynamical systems. Finally, the efficiency and accuracy of our networks might
be of use for neuromorphic applications, especially for representing dynamical systems that
are well-described by lower-order polynomials.

2 Spike coding networks
Here and in the following sections , we present the main results and refer the reader to the
Methods section for details. Consider a network of N spiking neurons, which emit spike
trains of the form si(t) =

∑
k δ(t

i
k − t), where δ is the Dirac delta function and {tik ≥ 0}

is the set of discrete times at which a spike was emitted. The population spike train is

2

described by the vector s(t) = [s1(t), . . . , sN (t)]T. Vectors will be denoted by lower case bold
letters, and wherever possible we will omit the time index for the sake of text clarity.

2.1 Linear autoencoder
Suppose that a given K−dimensional signal x(t) ∈ RK should be represented by the output
activity of the network .

::::
(Fig.

:::::
1A).

:
How should the neurons then spike to accomplish this

task? The theory of spike coding networks approaches this through two core assumptions
(Boerlin et al., 2013; Denève and Machens, 2016; Barrett et al., 2016):

(a) Linear decoding: the network representation x̂(t) is read out as

x̂ = Dr

where D ∈ RK×N is the decoding matrix, and r(t) = [r1(t), . . . , rN (t)]
T are filtered spike-

trains
ṙ = −λr + s,

where λ is the leak time-constant. The variable r can be seen as a neuron’s time-dependent
rate, or equivalently the effect of a neuron’s spikes on the post-synaptic potential of other
neurons.

(b) Efficient spiking: Di (the i−th column vector of the matrix D) represents the
contribution that a spike from neuron i will have on each dimension of the read-out signal;
more specifically, a spike at time t will update the current readout as x̂(t) → x̂(t) + Di.
Assumption (b) requires that this spike should only occur if it improves the read-out. Formally,
we require that a spike reduces the `2-error between the readout and the signal. Thus, neuron
i will fire at time t iff

‖x(t)− (x̂(t) + Di)‖22 < ‖x(t)− x̂(t)‖22 .

After some algebra (see Methods 7.1), and defining the membrane potential of each neuron
as Vi = DT

i (x̂− x), one finds an underlying dynamical description of the system where each
neuron spikes whenever Vi > Ti, with Ti = DT

iDi/2, and membrane potential dynamics

v̇ = −λv + DT(ẋ + λx)−DTDs, (1)

where v = (V1, . . . , VN). Thus, starting from the two core assumptions, we have derived
a recurrently connected network of leaky integrate-and-fire neurons. Through recurrent
connections (given by DTD) the network accurately tracks its input signal x, (Fig. 1B+C
top row).

2.2 Linear dynamics
In the above derivation, the signal x was provided directly to the network, but this is not
strictly necessary. If x follows some known linear dynamics ẋ = Ax (with A ∈ RK×K) then
its trajectory can be computed by the network (Boerlin et al., 2013). Their derivation uses
the fact that x ≈ x̂, so that (1) can be approximated as

v̇ = −λv + DT (Ax̂ + λx̂)−DTDs

= −λv + Ωfs + Ωsr,
(2)

where so-called “fast” connections Ωf = −DTD keep the error constrained on a short
time-scale

::::
(Fig.

::::::
1B+C

::::
top

::::
row), and “slow” connections Ωs = DT(A + λI)D implement

the dynamical computation using the filtered spikes r .
::::
(Fig.

::::::
1B+C

:::::::
middle

:::::
row).

:::::
Here

:::::
“fast”

::::
and

:::::
“slow”

:::::
refer

::
to

::::
the

::::::::
rise-time

::
of

::::
the

::::::::
synaptic

:::::
PSPs

:::::
(Fig.

::::
1B).

:
While technically an

approximation, this implementation works well in practice and can closely reproduce a given
linear dynamical system (Fig. 1Bmiddle

:::
+C

:::::::
middle

:::
row).

3

Slow

Multiplicative

Input

P
S
P
 (

m
V

)

Types of synapses

Linear readout

Network

Fast

A B C

P
S
P
 (

m
V

)
P
S
P
 (

m
V

)

Structure Type of computation

Representation

Linear dynamics

Nonlinear dynam.

*

Figure 1: Multiplicative Spike Coding Networks (mSCNs) can implement polynomial dy-
namics. (A) Schematic representation of the network. (B) The network has three types of
synapses, illustrated for two neurons (red and green

::::::
orange) connecting to another (blue).

The postsynaptic potential (PSP) of a cell endowed with multiplicative synapses will be
affected only if the two presynaptic neurons fire very close in time to each other.

::::::
Higher

:::::
order

::::::::::::
multiplicative

:::::::::::
interactions

::::
can

::::
also

::
be

::::::::::
necessary,

::::
and

:::
are

:::::::::
illustrated

:::
in

:::::
Supp.

:::::
Fig.

:::
S1.

(C) Example computations enabled by the different types of synapses: (top) the network
represents the two inputs (x1 and x2). The blue line represents the output of the network,
the dashed black lines the real input. (Middle) A network which computes the dynamical
system ż = x1+x2. The black dashed line represents the real sum of the inputs, the blue line
represents the output of the network. (Bottom) A network which computes the nonlinear
dynamical system ż = x1 ∗ x2, and thus integrates the product of x1 and x2. :::

For
:::::
both

::::::
linear

:::
and

:::::::::
nonlinear

:::::::::
dynamics

:::
the

::::
fast

::::::::
synapses

::::
are

::::
also

::::::::
required.

:

4

3 Nonlinear dynamics
The approximation in (2) was originally conceived for linear systems, but can in principle
be extended to any arbitrary dynamical system ẋ = F (x) (with F : RK → RK). The full
network dynamics then become

v̇ = −λv +DD
:

T(F (x̂) + λx̂)−DD
:

TDD
:

s, (3)

with the problem that the nonlinear function F () has to be somehow computed by the
network (or individual neurons). Previous work approximated this computation through
a set of basis functions (Thalmeier et al. (2016); Alemi et al. (2018); see Methods 7.6),
which can be interpreted as dendritic nonlinearities. Here we take a different approach. We
note that any smooth nonlinear function can in principle be approximated by a polynomial
transformation (De Branges, 1959). Furthermore, any polynomial function F : RK → RK

containing terms with maximum degree g can be written in the form

F (x) =

g∑
d=0

Adx
⊗d, (4)

where Ad ∈ RK×Kd

is the matrix of coefficients for the polynomials of degree d, and we
define M⊗d = M⊗M⊗· · ·⊗M as the Kronecker product applied d times, with the convention
that M⊗0 = 1 and M⊗1 = M. The Kronecker product is closely related to the outer-product
and computes all possible pair-wise multiplications between the elements of two matrices.
For example, the Kronecker product of two vectors of length l is itself a new vector of length
l2 (see Methods 7.4

::
7.2

:
for a detailed example

::::::::::
explanation).

Using this notation, the connectivity and dynamics for the multiplicative SCN network
implementing a polynomial function can be directly derived as

v̇ = −λv −DTDs + DT(

g∑
d=0

AdD
⊗dr⊗d + λx̂)

= −λv + Ωfs + Ωm0
s + Ωm1

s r + Ωm2
s r⊗2 + · · ·+ Ωmg

s r⊗d

= −λv + Ωfs +

g∑
d=0

Ωmd
s r⊗d,

(5)

where Ωf = −DTD, Ωm1
s = DT(A1 + λI)D and Ωmd

s = DTAdD
⊗d for d ∈ {0, 2, 3, . . . , g}.

The matrix Ωmd
s represents the d−th degree multiplicative interactions between cells,

::::
With

::::
this

::::::::::::
factorization

::
we

::::::::::::
demonstrate

:::
how

::::
any

:::::
given

::::::::::::
multiplicative

::::::::::
interaction

::
of

:::::::::::::
state-variables

:::
can

::
be

::::::::::
accurately

:::::::::::
implemented

:
through multiplicative synapses

:::::::
between

:::::::
neurons

:
(Fig. 1B bottom)

:::
+C

::::::::
bottom,

::::::::
Methods

::::
7.4).

:::::
The

:::::::
matrix

:::::
Ωmd
s :::::

then
::::::::::
represents

:::::
d−th

:::::::
degree

::::::::::::
multiplicative

:::::::::::
interactions

:::::::
between

:::::
cells. While higher order interactions are unlikely to be feasible, lower order

multiplicative interactions may indeed be possible in biology, and have been hypothesized
before (Koch and Poggio, 1992). In particular, Ωm2

s represents the connectivity required for
each cell to multiply each pair of their inputs (Fig. 1B

:::
+C bottom row). Compared to linear

dynamics, multiplicative synapses enable nonlinear computations such as AND gates (Fig.
1C,D). Therefore, the presence of multiplicative synapses arises naturally in the mSCN from
extending the spike coding framework to polynomial dynamical systems.

:
,
::::
with

::::
the

:::::::
synapse

::::::::::
essentially

::::::
acting

:::
as

::
a

::::::::::
coincidence

:::::::::
detector.

:::::::
Higher

:::::
order

::::::::
synapses

:::::
would

:::::::
behave

::::::::
similarly

:::
but

:::::
with

::::
three

:::
or

:::::
more

:::::::::
coincident

:::::
spikes

:::::::
(Supp.

::::
Fig.

::::
S1).

::::::
While

::::
these

:::::
higher

::::::
order

:::::::::::
interactions

:::
are

::::::::
unlikely

::
to

:::
be

:::::::::::
biologically

:::::::
feasible,

::::::
lower

:::::
order

::::::::::::
multiplicative

::::::::::
interactions

::::
may

::::::
indeed

:::
be

:::::::
possible

::
in

:::::::
biology,

::::
and

:::::
have

::::
been

::::::::::::
hypothesized

::::::
before

::::::::::::::::::::::
(Koch and Poggio, 1992)

:
,
::
as

:::
we

::::
will

:::::::
discuss

::::::
further

:::
in

:::
the

::::::::::
discussion.

:
In principle, increasingly complex nonlinear

dynamics may be implemented through the inclusion of higher-order terms in
:::
eq.

:
(5) (Ωmd

5

for d > 2), though this flexibility comes with increased cost on the number of synapses and
interactions thereof

:::::
neural

:::::::::::
interactions. In a later section we will show how to avoid interac-

tions beyond pair-wise synapses, and we will derive the expected number of connections for
each type of synapses.

::::::::
synapse.

:::::::::
Compared

:::
to

:::::
linear

::::::::::
dynamics,

:::::::::::::
multiplicative

::::::::
synapses

:::::::
enable

:::::::::
nonlinear

::::::::::::
computations

::::
such

:::
as

:::::
AND

:::::
gates

::::::
(Fig.

:::
1C

:::::::::
bottom).

::::::::
Overall,

::::
the

::::::
above

:::::::::
derivation

:::::::::::::
demonstrates

:::::
that

:::
the

::::::::
presence

::
of

:::::::::::::
multiplicative

::::::::
synapses

:::::
arises

:::::::::
naturally

::
in

:::::::
mSCNs

:::::
from

:::::::::
extending

::::
the

::::
spike

::::::
coding

::::::::::
framework

::
to

::::::::::
polynomial

::::::::::
dynamical

::::::::
systems.

:

3.1 Lorenz attractor
We illustrate the functionality of the mSCN formalism through an implementation of a
simple dynamical system, the Lorenz attractor. The Lorenz attractor is a system of ordinary
differential equations first studied by Edward Lorenz, which may lead to chaotic solutions
(Lorenz, 1963; Strogatz, 2018). It is defined as

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz.

Notably, this system contains
:::::::
pairwise

:
multiplicative terms of the state-variables, thereby

making it a polynomial (and nonlinear) dynamical system. In the following, we use the
“classical” parameter values σ = 10, β = 8/3 and ρ = 28, for which the system is in a
chaotic regime. This is a useful case study as the resulting behavior is very sensitive to
small representation errors, and has previously been used to test spiking network dynamical
system implementations (e.g. Thalmeier et al. (2016)).

We implemented the Lorenz system in three ways, each using networks of N = 100
neurons. First, we simulated the Lorenz system in a standard numerical simulation (Runge-
Kutta method), and fed the dynamic variables x directly as input into an autoencoding
network with only fast synapses. Note that the correct trajectory is thus continuously being
fed into this network. This control acted as an upper-bound on the accuracy of representation
with a spiking network of a given size and read-out weight magnitudes. As expected the
network represented the system with high fidelity — only small deviations arose compared
to the standard numerical simulation due to the discrete spiking representation of the
network (Fig. 2Aii, dotted lines). To have a better idea of the accuracy of the representation,
we followed Thalmeier et al. (2016) and compared the values of neighboring peaks in the
dynamics of the z variable, which closely tracked a well-defined function defined by the pure
Lorenz simulation (Fig. 2Aiii

:::
Aiv).

Next, we implemented the Lorenz system in an mSCN (following Eq. 5, see Methods 7.5).
The resulting network is able to compute the Lorenz dynamics with high accuracy (Fig.
2B). The representation tracked the dynamics of the standard numerical simulation (dotted
lines) for a reasonable amount of time, despite the attractor’s chaotic nature (Fig. 2B iii

:::
i+ii),

though this depends on the simulation time step (set to 0.1ms here). Additionally, despite
the deviations from the ‘true’ trajectory, the peak analysis demonstrates that qualitatively
the implementation is near perfect (Fig. 2B iv). Furthermore, the network simulation still
display

:::::::
displays the extreme robustness to cell death of traditional SCNs (Supp. Fig. 1

::
S2).

Lastly, for comparison’s sake, we implemented the same dynamical system using basis
functions with trained weights (Methods 7.6) in order to understand the benefits and
drawbacks of each approach. We used 500 basis functions per neuron. The Lorenz attractor
is again qualitatively well reproduced (Fig. 2 top). But in contrast to the two previous
schemes, the implementation with basis functions led to more inaccuracies (Fig. 2C), quickly
resulting in missed shifts in the dynamics. This was likely due to the approximate nature
of the basis function implementation, and we note that more precise simulations might be
possible with more and different basis functions (see e.g. Fig. 3f-h in Thalmeier et al. (2016);
though even there, outliers are still present).

6

These results might suggest that the direct implementation of the Lorenz system with the
mSCN is capable of more accurate dynamics than a basis function implementation. However,
we note three caveats here. First, the accuracy of the dynamics depends on the nature
of the underlying system — e.g., small inaccuracies would matter less for a system with
stable fixed points. Second, the Lorenz attractor is perfectly described by a polynomial, and
other dynamical systems might be better described by a basis-function implementation (of
similar complexity as a given mSCN). Third, the differences in accuracy and scaling of the
two implementations suggests that each may be more suitable depending upon the specific
problem at hand (on the order of N3 parameters are needed for the mSCN and bN2 for the
basis function implementation, where b is the number of basis functions).

4 Higher-order polynomials with sequential networks
While the Lorenz system is a good case study for demonstrating the power and accuracy
of mSCNs, a core problem remains: higher order polynomials necessitate higher order
multiplicative interactions. E.g., a polynomial of order 3 would require a r⊗3 term, with
on the order of N3

:::
N4 synapses. Such precise higher-order interactions may not always

be feasible, either biologically or on a neuromorphic substrate. However, as we show here,
this is not strictly necessary. Across populations, it is possible to combine many sequential
pairwise interactions to achieve multiplications of any other order.

4.1 Input transformations
In principle, an SCN can also represent a nonlinear transformation of a signal G(x), where
G is a smooth function G : RK → RM , M ≥ 1. For this, consider a new SCN with decoder
W, spikes σ, and filtered spike trains ρ. In that case v evolves according to

v̇ = −λv + WT (JG(x)ẋ + λG(x))−WTWσ, (6)

where JG is the Jacobian of G (Methods 7.1). The problem here is that the transformation
function has to be either provided or computed by the network. However, if G is a polynomial
function, the computation can be implemented using multiplicative synapses — e.g., for
quadratic terms, we can use G(x) = x⊗x. Specifically, we need a network that takes as
input the output of another network x̂ = Dr (with spikes s) and returns Wρ ≈ x̂⊗2 (Supp.
Fig. 2, Methods 7.3). Using the fact that ṙ = −λr + s, we obtain dynamics

v̇ = −λv + Ωx(r⊗ s + s⊗ r +−λr⊗ r) + ΩW
f σ,

with Ωx = WT(D ⊗D) and ΩW
f = −WTW.

:::
We

::::::::
illustrate

::::
the

::::::::
resulting

::::::::
network

::::
and

::
its

:::::
inputs

::::
and

::::::::
outputs

::
in

::::::
Supp.

::::
Fig.

:::
S3.

:

4.2 Combining networks
Now, the combination of this network with another of the form described in eq. (5)

:
a
::::::::
standard

::::::
mSCN

::::
(eq.

:::
5)

:::::
with

::
a

:::::::
network

::::::
which

::::::::::
calculates

:::
the

:::::::
square

::
of

:::
its

:::::::
inputs

::::::
(Supp.

::::
Fig.

:::::
S3),

results in a system with the ability of computing third-order multiplications with only
pairwise (second-order) synapses .

::::
(Fig.

:::::
3A). Notably, one network computes the pairwise

multiplications, and the other computes the desired third-order dynamic equation using
another pairwise multiplication of those new variables (Fig. 3A, Supp. Fig. 2)

:::
the

:::::::
squared

:::::::
network

:::::::
output

::::::
(x⊗x)

::::
and

::
x.

More concretely, we consider a polynomial function F : RK → RK with maximum degree
g = 3. We can write F (x) = Ax + Bx⊗2 + Cx⊗3 using eq. (4). Naively, a network of
neurons that approximates the solution to ẋ = F (x) can be written using eq. (5) as

v̇ = −λv + Ωfs + Ωm1
s r + Ωm2

s r⊗2 + Ωm3
s r⊗3,

7

Figure 2: Implementation of a Lorenz dynamical system. Across columns: (A) The numerical
solution was found using an explicit Runge-Kutta method of order 4. The network contains
only fast synapses and receives as input the output of the Lorenz simulation, which the network
read-out tracks closely. (B) A network with multiplicative synapses (mSCN) computing
the Lorenz attractor through its network dynamics. (C) A network with nonlinear basis
functions computing the Lorenz attractor through its network dynamics. Across rows: (i) 3D
view of the network readout for 100 sec (grey). The dotted line shows the ‘true’ simulation
in the 2-5sec period, and the blue line shows the corresponding network output trajectory.
(ii) Each network readout dimension (blue) across time vs the ‘true’ solution (black dotted).
The gray region indicates the 2-5sec period used in panels i and iii. (iii) Raster plot with
spikes emitted by the neurons in the time interval 2 - 5 sec. (iv) Peak analysis over 100 sec:
blue = network output, black = ‘true’ Lorenz simulation.

8

which contains the third-order synapses in the last term. However, we now reintroduce
the first network (from Section 4.1) with

::::::
which

:::::
takes

:::
Dr

:::
as

:::::
input

::::
and outputs Wρ ≈ x̂⊗2,

which .
:::::
This

:
allows the term Ωm3

s r⊗3 to be replaced by DTC(D⊗W)(r⊗ ρ), yielding

v̇ = −λv + Ωfs + Ωm1
s r + Ωm2

s r⊗2 + Ωext
s (r⊗ ρ), (7)

where Ωext
s = DTC(D⊗W). The same argument can be extended to higher order multi-

plications, at the cost of having dlog2(g)− 1e support networks, where g is the maximum
degree of F

:::
F ()

:

1.

4.3 Example: approximating a double pendulum
We illustrate the use of the higher-order polynomial implementation using the double
pendulum as an example (Fig. 3B). Suppose that each pendulum has length l and mass m.
We denote θ1, θ2 the angles of the first and second pendulum with respect to the vertical
axis (i.e. θi = 0 when the pendulum is pointing downwards), and pθ1 and pθ2 their momenta.
The full double pendulum dynamics can be derived using the Lagrangian (Methods 7.7; e.g.,
Levien and Tan (1993)). For small angles one can consider the approximation sin θ ≈ θ and
cos θ ≈ 1, which leads to the following approximated dynamics:

θ̇1 =
6

7ml2
(2pθ1 − 3pθ2)

θ̇2 =
6

7ml2
(8pθ2 − 3pθ1)

ṗθ1 = − 1
2ml

2
(
θ̇1θ̇2(θ1 − θ2) + 3

g

l
θ1

)
ṗθ2 = − 1

2ml
2
(
−θ̇1θ̇2(θ1 − θ2) +

g

l
θ2

)
.

We denote x = (θ1, θ2, pθ1 , pθ2)
T, and rewrite the system as ẋ = Ax + Cx⊗3 (A and C

defined explicitly in Methods 7.7).
We implemented the

:::::::::
first-order

:::::::::::::
approximated

:
double pendulum system in three distinct

ways. As before for the Lorenz system, we first simulated a control network that was
simply asked to autoencode the dynamics directly, which were computed externally. Next,
we implemented two mSCNs — one network computed the dynamics through explicit
third-order multiplicative synapses (as in (7

:::
eq.

::
(5)). The other implementation utilized the

trick that one network computes the pairwise multiplication of the variables, and the other
network uses that to compute the third-order multiplication of the variables (as in

:
a
::::::::
support

:::::::
network

:
(5))

::
as

::::::::
explained

:::
in

:::
eq.

::::
(7)),

::::::::
allowing

:::
the

:::::
main

::::::::
network

::
to

:::::
avoid

:::::::
explicit

:::::::::::
third-order

::::::::::
interactions. We found that these two dynamic mSCN implementations produced accurate
representations of the dynamics, closely following the autoencoder network which received
the “true” solution directly.

5 On the number of required connections
As shown in the previous sections, mSCNs offer a powerful and intuitive way of implementing
polynomial dynamical systems in spiking networks. However, though they may be efficient
with respect to the number of neurons and spikes required, they can require dense synaptic
connections (sometimes with several connections for each pair of neurons). Specifically, in
the

1
:::
The

::::::::
maximum

:::::::::::
multiplication

:::::
order

::::
that

:::
can

:::
be

::::::::
computed

::::
with

:
k
::::::::
networks

::
is

::
2k

:
-
:::
in

::::
fact,

:::
the

::::
first

::::::
support

::::::
network

:::
can

:::::::
compute

::::
x̂⊗2,

:::
the

::::::
second

:::
can

::::
take

::
as

::::
input

:::
the

::::::
output

::
of

:::
the

::::
first

:::
and

:::::::
compute

::::
x̂⊗4,

:::
and

::
so

:::
on.

9

A CB

Figure 3: Third order polynomial dynamics solved by sequential pairwise multiplications.
(A) To avoid third order multiplications, another network can be used whose output will be
the pairwise multiplication of any two input dimensions (which can be done through only
pair-wise synapses). (B) Example output of a network computing the double pendulum and
using an external network to avoid the third order multiplications. (C) Solution computed
by employing a neural network with third order synapses (dashed line) or employing two
neural networks to avoid the third order multiplications (dash-dotted line) compared to the
numerical solution of dynamical system (dotted line). All solutions almost perfectly overlap.

::
In

:::
the

::::::::
standard

:
SCN framework, any two neurons with an overlap in signal representation

will
:::
can

:
be connected by fast and slow synapses, along with the possibility of additional

slow multiplicative connections with the derivations introduced here
:
.
::
In

::::::::
mSCNs,

:::::::::
additional

::::::::::
connections

::::
are

::::::::::
introduced

::::
with

::::
the

:::::::::::::
multiplicative

::::::::
synapses. So far we have assumed all

neurons share signal space, resulting in full all-to-all connectivity of all types of connections
(i.e., N2 fast connections, N2 slow connections, N3 pair-wise multiplicative synapses, and
so on). However, connectivity in the brain is known to be sparse (Song et al., 2005; Lefort
et al., 2009). Given this constraint , it is important to address the expected density of the
various connectivities, especially the costly multiplicative ones.

We consider the
::::::::::
understand

::::
how

:::::::
mSCNs

::::
can

:::
be

:::::::::::
constructed

::::
with

:::::::
sparser

::::::::::::
connectivity,

:::
and

::::
the

:::::::::::
relationship

:::::::
between

::::::::::::
connectivity

::::::
density

::::
and

::::::::::::
performance.

:

::::::::
Consider

::::::::
networks

::
of

::
N

:::::::
neurons

:::::::::::
representing

::
a
:::::::::::::
K-dimensional

::::::
signal

:::::
space,

:::::
with

::::::::
decoding

::::::
matrix

:::::::::::
D ∈ RK×N .

::::
The

:::::
i−th

:::::::
column

::::::
vector

::
of

:::
the

::::::
matrix

:::
D,

::::::::
denoted

::
by

::::
Di,:::::::::

represents
:::
the

::::::
weights

::::::::::
associated

:::
to

::::::
neuron

::
i.
:::::
Here

::::
and

:::
in

:::
the

:::::::::
following

:::
we

:::
will

::::
say

::::
that

::::::::
“neuron

:
i
:::::
codes

::
for

::::::::::
dimension

::
x”

::::::::
meaning

:::::
that

:::
the

:::::
x−th

:::::
entry

:::
of

:::
Di ::

is
::::
6= 0.

::::
We

:::
will

::::::
define

:::
the

::::::::::::
connectivity

::::::
density

:::
as

:::
the

:::::::::::
proportion

::
of

::::
the

::::::::
all-to-all

:::::::::::
connectivity

::::::
which

::
is
::::::
being

:::::
used.

:::::::::::::
Connectivity

::::::
density

::
is
:::::
then

:::::::::::
determined

:::
by

::::
the

:::::::
decoder

:::::::
matrix

:::
D

::::
and

:::::
some

:::::
fixed

::::::::
matrices

::::
Ad:::::

given
::
by

::::
the

:::::::::
dynamical

::::::::
system,

::
as

:::::::::
explained

:::
in

:::
eq.

::::
(5).

:::::
Thus

::::
far,

:::
we

:::::
have

::::::::::
considered

::::
that

::::
each

::::::
neuron

::::::
codes

:::
for

:::::
each

::::::::::
dimension,

::::::::
meaning

:::::
that

::
D

:::
is

:::::
dense

:::::
and

:::::::::::
connectivity

::
is
::::::::
all-to-all

::
for

:::::
each

::::::::
synapse

:::::
type.

::
If
::::::::
neurons

:::::::
instead

::::
only

::::::
coded

:::
for

::
a
::::::
subset

:::
of

:::
the

:::::::::::
dimensions,

:::::
how

:::::
sparse

::::::
would

::::
the

:::::::::::
connectivity

::::
be?

:::
We

::::
will

:::::
make

::::
this

:::::::
explicit

:::
by

::::::
giving

::::
each

:::::::
neuron

::
a

::::
fixed

::::::::::
probability

:
p
:::
to

::::
code

:::
for

:::::
each

:::::
signal

::::::::::
dimension

::::
(i.e.

:
p
::
is
::::
the

::::::::::
probability

::::
that

::
a
:::::
given

:::::::
matrix

:::::
entry

::
in

::
D

::
is
::::::::::
non-zero).

::
If

::::::
p = 1,

:::::
then

::
all

::::::::
neurons

::::
will

::::
code

:::
for

:::
all

::::::
signal

:::::::::::
dimensions.

:::
As

:
p

::::::::::
approaches

::::
zero,

::::::::
neurons

::::
will

::::
code

:::
for

::::::::::::
progressively

::::
less

:::::::::::
dimensions.

:

::::::::
Consider

:::
the three connectivity matrices required for second-order multiplicative computa-

tions: the fast connection
::::::::::
connections

:
Ωf = DTD, the slow connections Ωm1

s = DT(A+λI)D
and the multiplicative connections Ωm2

s = DTBD⊗D.
:
In

:::::
Fig.

::
5
:::
we

:::::::::::
investigate

:::
the

::::::::::
relationship

::::::::
between

:::::::
decoder

:::::::
density

::::
and

:::::
final

::::::::
network

:::::::::::
connectivity

:::::::
density.

::::
We

::::::::
calculate

:::::::::
theoretical

:::::::::::::
upper-bounds

:::
on

::::
the

:::::::::
expected

::::::::::::
connectivity

::::
and

::::::
report

:::::
here

::::
the

::::::::::
asymptotic

::::::::
behavior

::
in

::::::
terms

::
of

:::::::
density

::::
(see

:::::::::
Methods

:::
7.8

::::
for

:::::::
detailed

::::::::::::
derivations).

:::::::::::::
Additionally,

:::
by

:::::::::
generating

:::::::
random

:::::::::
decoding

::::::::
matrices

:::
for

:::::::
different

::::::::::::
probabilities

::
p,

:::
we

::::::::
measure

:::
the

::::::::
empirical

10

::::::::
expected

:::::::::::
connectivity

:::::::
density.

:

:::
The

::::
fast

::::::::::
connection

:::::::
density

:::::::
(defined

::
as

:::
the

::::::::::
proportion

::
of

:::::::::
maximum

:::::::
number

::
of
:::::::::::
connections

:::::
used)

:::::::
depends

:::
on

:::::
both

::
p

:::
and

::::
the

::::::
signal

:::::::::
dimension

:::
K

:::
and

::::::::
behaves

::
as

:

E(fast conn. dens.) ∼ 1− (1− p2)K .
:::::::::::::::::::::::::::::::::::

(8)

::::::::
Although

::::
the

:::::::
density

::::
rises

:::::::
sharply

:::
as

:::
the

::::::
signal

:::::::::::::
dimensionality

:::::::::
increases

:::::
(Fig.

::::
5A),

:::
we

:::
see

::::
that

:::
for

:::
low

:::
to

:::::::::
moderate

:
p
::::
and

:::
K

:::
the

:::::::::::
connectivity

:::::::
density

::
is
:::
far

::::::
below

:::::::::
all-to-all.

The fast connections only depend on the density of the decoder, and any two neurons
are connected whenever they share a decoding-dimension. For the slow and multiplicative
connections this density additionally depends

:::::::::
connection

::::::::
densities

::::::::::::
additionally

:::::::
depend on

the ‘density’ of the dynamical system interactions, i.e. the number of non-zero elements
in the matrices A and B. Considering a fixed probability p that a given neuron codes for
a given signal dimension, the full density then depends on both p and the signal dimension
K for the fast

:
,
:::::::
denoted

:::::
with

::::
NA ::::

and
:::
NB::::::::::::

respectively.
::::
We

::::
find

::::::::::
theoretical

:::::
upper

:::::::
bounds

::
on

::::
the

::::::::
expected

::::::::
densities

:

E(slow conn. dens.) . E(fast conn. dens.) +NAp
2,

:::
(9)

::
for

:::::
slow connections (Fig. 3) , and the dynamical system density for the slow and

:::
5B)

::::
and

E(multiplicative conn. dens.) . NBp
3,

:::::::::::::::::::::::::::::::::::::::
(10)

::
for

:
multiplicative connections (Fig. 3B,

:
5C, see Methods 7.8). Although this connection

probability rises sharply as the signal dimensionality increases, we see that for low to
moderate numbers of signals, the connectivity density is far below all-to-all.

::
for

::::::::
details).

Notably, the slow and multiplicative connections have a
:::::
much slower rise compared to the

fast connections, which may push the network closer to a biologically-plausible regime(though
this merits further analysis). .

:

::::
Such

::::::::
reduced

:::::::::::
connectivity

:::::::
density

::::
does

:::::
come

:::
at

:::::
some

::::
cost

::
to

::::::::::::
performance,

::
in

::::::::::
particular

::
in

::::::::::
robustness.

:::::
We

:::::::::::
demonstrate

::::
this

:::
by

:::::::::::
considering

::::
the

::::::
Lorenz

:::::::::
attractor

::::::::::::::
implementation

::::
with

::::::::
different

::::::
values

::::
for

::
p,

::::
and

:::
by

:::::::::::
considering

::::::::
different

::::::::
numbers

:::
of

::::::
active

::::::::
neurons.

::::
We

:::::
found

::::
that

::::::::::
decreasing

::::
the

:::::::
decoder

:::::::
density

::::::
made

:::
the

::::::::
network

:::::
more

::::::
prone

:::
to

:::::
errors

:::
as

:::
the

:::::::
number

::
of

::::
lost

::::
cells

:::::::::
increased

::::::
(Supp.

::::
Fig.

:::::::::
S2C+D).

::::::::::::
Nonetheless,

::::
this

:::::::
increase

:::
in

:::::
error

:::
was

:::::
nearly

:::::::::::
nonexistent

::::
and

:::::::
became

:::::::
sizeable

:::::
only

:::::
after

::::::
killing

:::::
more

::::
than

:::::
80%

::
of

:::
the

:::::
cells.

:

6 Discussion
In this report, we investigated a new approach for implementing nonlinear dynamical systems
in spiking neural networks. We extended the spike coding network (SCN) framework
(Boerlin et al., 2013; Denève and Machens, 2016; Calaim et al., 2020) to implement arbitrary
polynomial dynamics. We obtain the multiplicative SCN (mSCN), which requires fast,
slow, and multiplicative connections. For second-order systems, the connectivity requires
pair-wise multiplicative synapses, and we demonstrated how higher-order multiplications can
be implemented in several network stages with only pair-wise synapses. We demonstrated
the accuracy and flexibility of this formalism by simulating the Lorenz system and a third
order approximation of a double pendulum. Due to the rich flexibility of polynomials
for approximating arbitrary nonlinear functions (Stone-Weierstrass Theorem or Taylor
Expansion), this approach could in principle be extended to many other systems for which
a lower-order polynomial approximation is sufficient. Lastly, we analyzed the relationship
between the sparsity of signal coding per neuron and the connectivity sparsity (for fast, slow,
and multiplicative connections), and showed how the need for all-to-all connectivity can be
relaxed.

11

A B C

Fa
st

 C
o
n
n
e
ct

io
n
s

D
e
n
si

ty

(r
e
la

ti
v
e
 t

o
 m

a
x
.)

S
lo

w
 C

o
n
n
e
ct

io
n
s

D
e
n
si

ty

(r
e
la

ti
v
e
 t

o
 m

a
x
.)

Q
u
a
d
ra

ti
c

C
o
n

n
.
D

e
n
si

ty

(r
e
la

ti
v
e
 t

o
 m

a
x
.)

Decoder Density (p) Decoder Density (p) Decoder Density (p)

Figure 4: Expected number
::::::::::
connectivity

:::::::
density

::::::::
relative

::
to

::::::::
all-to-all

::::::::::::
connectivity

:::
for

:::
the

:::::::
different

::::::::
synapse

::::::
types

::
as

::
a
::::::::
function

:
of connections

:::
the

::::::::
decoder

:::::::
density

::
p.
:::::::

Solid
::::
lines

::::::::
illustrate

:::::
mean

:::::::
across

:::::::::
iterations,

::::::::
whereas

:::::::
shaded

::::::
areas

::::::::
represent

::::
±1

:::::::::
standard

::::::::
deviation

::::
from

:::
the

::::::::
average

::
of

:::
the

:::::::::
simulated

::::::::::::
connectivity

::::
(see

::::::::
Methods

::::
7.8).

::::::::
Dashed

::::
lines

::::::::::
correspond

::
to

:::::::::
theoretical

::::::
upper

:::::::
bounds

::::
(Eq.

:::::
8-10).

::
(
::
A

:
)

:::
The

::::::::::::
connectivity

::::::
density

:
for

:::
the

:
fast synapses

:::
for

:::::::
different

::::::
signal

::::::::::
dimensions

:
(A

::
K),

:
.
:
(
::
B

:
)
::::
The

:::::::::::
connectivity

:::::::
density

:::
for

:::
the

:
slow synapses

:::
due

::
to

:::::
linear

::::::::::::
computation (B

::
i.e.

::::::::
∼ NAp2), and slow multiplicative

:::
for

::::::::
different

:::::
linear

:::::::::
dynamical

::::::
system

::::::::
densities

:
(quadratic

:::
NA)synapses:.:(C) as a function of the decoder

:::
The

::::::::::::
connectivity

density p for different signal dimensions
::::
slow

:::::::::::::
multiplicative (K

::::::::
quadratic) and

::::::::
synapses,

::::
for

:::::::
different

:::::::::
quadratic

:
dynamical system density

:::::::
densities

:
(
::::
NB).::

NA for the linear part and
NB for

::::::::
represent

:
the quadratic part, each representing the number of non-zero entries of

matrices A and B resp
::::::::::
respectively.). Dashed lines represent the theoretical upper bounds,

whereas shaded areas represent ±1 standard deviation from the average of the simulated
connectivity (see Methods 7.8).

6.1 Related work
The study of nonlinear computation has a long history in computational neuroscience, and
has traditionally been studied in firing-rate networks, in which each neuron is represented
by a continuous (or sometimes binary) variable (Dayan and Abbott, 2001). When such
neurons are endowed with a nonlinear input-output function, nonlinear computations are
possible (Jaeger, 2001; Sussillo and Abbott, 2009; Mante et al., 2013; Rubin et al., 2015;
Mastrogiuseppe and Ostojic, 2018).

In spiking neural networks (SNNs) nonlinear computations have previously been achieved
by using random connectivity as a basis for complex dynamics (Maass et al., 2002), or using
supervised training algorithms to optimize the networks (Neftci et al., 2019). Alternatively,
more principled approaches to building spiking neural networks include the neural engineering
framework (NEF) (Eliasmith and Anderson, 2004) and SCNs (Boerlin et al., 2013), the
latter of which we studied here. Nonlinear dynamical system implementations in previous
SNNs usually harnessed various nonlinearities (e.g. neural, dendritic, or synaptic) as basis
functions, with the connectivity required for a given dynamical system implemented through
supervised training (as we also implemented in Fig. 2

:
C). Previous nonlinear computations in

SCNs also relied on such basis functions (Thalmeier et al., 2016; Alemi et al., 2018). The
basis function approach works very well, but does not allow for a direct derivation of the
connectivity given a nonlinear dynamical system and thus lacks a well-defined mapping
between computation and connectivity. In contrast, in mSCNs the connectivity is defined
directly from the dynamical system, and is therefore more interpretable.

Finally, a more recent approach has emerged in which spiking networks are treated as
piecewise linear functions, depending on which neurons in the network are active (Mancoo
et al., 2020; Baker et al., 2020) (which may also explain the success of supervised training
algorithms without explicit basis functions, e.g., Zenke and Vogels (2021)). These methods
can be seen as complementary to our approach, in which case a nonlinear input-output
function would be combined with nonlinear dynamics through additional slow connections.

12

6.2 Biological implications
mSCNs represent a novel hypothesis of nonlinear computation in neural circuits, which can
be seen as complementary to previous basis-function approaches. While previous theoretical
studies have noted the wide range of nonlinear computations that multiplicative synapses
could in principle enable (Koch and Poggio, 1992; Salinas and Abbott, 1996; Nezis and
Rossum, 2011), our work provides a precise formalization on how to use such synapses
to implement any polynomial dynamical system efficiently in a spiking neural network.
Additionally, the resulting networks inherit the attractive features from standard SCNs which
match well to biological network activity (e.g. irregular and sparse activity, robustness, and
E/I balance). But how biologically feasible are the the required synapse interactions and
network connectivities?

First, the resulting network connectivity is extremely dense: by default, mSCN networks
predict all-to-all connectivity. While local circuits in the cortex are indeed densely connected
(Fino and Yuste, 2011; Harris and Mrsic-Flogel, 2013), connectivity is not all-to-all (Ko et al.,
2011; Song et al., 2005; Perin et al., 2011). However, as we showed in Fig. 3

:
5, full all-to-all

connectivity is not required for mSCNs to function. The connectivity density is a function of
the fraction of variables each neuron codes for, which is formalized by imposing sparsity of
the decoder matrix. Consequently, according to SCN theory, if all neurons would code for
all dimensions, this would be reflected in an all-to-all connectivity structure. Conversely, if
neurons would code for a subset of the dimensions, this would be reflected in a less dense
connectivity structure (but also, accordingly, a less robust code). This last property is not
easily measured in the brain, where the amount of variables each neuron codes for is not clear.
While current hypotheses emphasize that neurons exhibit mixed selectivity to many task
variables (Rigotti et al., 2013), recent evidence also suggests that cortical representations
are very high-dimensional (Stringer et al., 2019b,a). Therefore, it is plausible that neurons
can display mixed selectivity while also only coding for a small subset of the overall coding
space, leaving room for a more sparse implementation of our model.

Second, mSCNs require each pair of neurons to have three types of synapses connecting
to each other (Fig. 1). The presence of several distinct synaptic connections between pairs of
cells have indeed been observed in experimental circuit reconstruction studies (Popov and
Stewart, 2009; Kasthuri et al., 2015). However, the feasibility of the precise multiplicative
interactions is less clear. We can at the very least state that a form of multiplication must be
performed at some level in biological networks. Several examples of effectively multiplicative
computations have been characterized from experimental studies (Peña and Konishi, 2001;
Gabbiani et al., 2002; Zhou et al., 2007; Arandia-Romero et al., 2016), and multiplicative
interactions have been hypothesized to exist in the dendritic tree (London and Häusser, 2005).
Indeed, experimental and theoretical work has long shown the computational advantages of
nonlinear synaptic and dendritic interactions in single neurons (Poirazi et al., 2003; London
and Häusser, 2005). Mechanisms such as dendritic calcium or NMDA spikes (Schiller et al.,
2000; Augustine et al., 2003), synaptic clustering (Larkum and Nevian, 2008), and shunting
inhibition (Mitchell and Silver, 2003; Zhang et al., 2013) are well established and could
contribute to a code relying on multiplicative interactions (as detailed in (Koch and Poggio,
1992)). Finally, even if not fully feasible, for a given polynomial system mSCNs could be seen
as defining the ideal set of interactions required for a given network of neurons, which would
then have to be replicated by a given network either by a basis function approach or through
non-optimal multiplicative interactions. Future work will have to show how well a more
biological implementation of multiplicative interactions would allow for precise nonlinear
computations.

:::::::
Finally,

:::::
while

:::::
higher

:::::
order

:::::::::::::
multiplicative

::::::::::
interactions

::::
are

::::::::::
increasingly

:::::::
difficult

:::
to

:::::::::
implement

::::::::::
biologically,

:::
we

:::::::::::::
demonstrated

::::
that

:::
by

::::::::
stacking

:::::::::
networks

::::
with

:::::::::::
lower-order

:::::::::::
interactions

:::
one

:::
can

:::::::
achieve

:::
the

:::::
same

:::::::::::::
computations.

::::
This

::::::
makes

:::
the

::::::::
concrete

:::::::::
prediction

::::
that

::::
the

:::::::::::
connectivity

:::::::
between

:::::
areas

:::::::
should

:::
be

::
of

::::
the

:::::
same

:::::::::::::
dimensionality

:::
as

:::
the

::::::
signal

::::::
being

::::::::::
transferred.

:::::
This

::::
does

::::::
indeed

:::::
seem

:::
to

:::
be

::::
the

::::
case

:::
to

:::::
some

:::::::
degree,

:::::
with

:::
the

::::::::::::::
communication

::::::::
between

:::::
some

13

::::
areas

::::::
being

::::::::::::::
low-dimensional

::::::::::::::::::::
(Semedo et al., 2019).

::::::
There

::
is

::::
also

::
a

:::::
likely

:::::
limit

::
to

::::
how

::::::
many

::::::::
networks

:::
can

:::
be

:::::::::
effectively

:::::::
stacked

::
in

::::
this

::::
way

:::
to

:::::::
perform

:::::::::::
higher-order

::::::::::::
interactions,

::
as

::::
each

::::::
stacked

::::::::
network

::::::::::
introduces

:
a
::::::
delay.

:

6.3 Computational and neuromorphic applications
Even given potential biological limitations, we contend that mSCNs offer two benefits. First,
the fact that the implementation of polynomial dynamics is direct and explicit implies that
this technique offers a useful comparative control when considering the possible computations
that spiking networks can perform, as well as the limits of their accuracy. This model may
therefore serve as a useful reference for future studies. Second, neuromorphic implementations
of spiking neurons are becoming increasingly feasible (Young et al., 2019). As many of these
rely on networks of integrate-and-fire type neurons (Indiveri et al., 2011; Merolla et al., 2014;
Davies et al., 2018), it is in principle less constrained by biological plausibility. In this context,
the need for high

:::::
dense

:
pair-wise connectivity and precise multiplicative interactions may be

an acceptable cost for a precise connectivity recipe for a given nonlinear computation with
fewer neurons. For example, a Lorenz attractor can be efficiently and precisely implemented
with just 10 neurons (Supp.Fig. 1

::::
Fig.

::
S2), in contrast to the 1600 neurons used in Thalmeier

et al. (2016).

6.4 Conclusion
In sum, we have provided a proof of concept of direct and explicit polynomial dynamics
implemented in spiking networks. Future directions include the application of this framework
to other biologically-plausible and neuromorphic computations, a study of the efficiency of
this framework, and the potential for biologically-plausible learning of the connectivity.

Author Contributions
MN contributed to discussions, initial and follow-up implementations, mathematical deriva-
tions and writing of the paper; JWP contributed to discussions and initial implementations;
WFP contributed to discussions, supervision, and writing of the paper; SWK conceived the
initial idea, contributed to supervision, discussions and initial implementation, and writing
of the paper.

Acknowledgements
We thank Christian Machens and Nuno Calaim for useful discussions on the project. This
report came out of a collaboration started at the CAJAL Advanced Neuroscience Training
Programme in Computational Neuroscience in Lisbon, Portugal, during the 2019 summer.
The authors would like to thank the participants, TAs, lecturers, and organizers of the
summer school. SWK was supported by the Simons Collaboration on the Global Brain
(543009). WFP was supported by FCT (032077). MN was supported by European Union
Horizon 2020 (665385).

7 Methods

7.1 General derivation of spike coding network
We will show here a generalization of the derivation of spike-coding networks (SCNs) shown
in Barrett et al. (2016), ignoring the constraint that neurons need to be either excitatory or
inhibitory. Consider a network of N leaky integrate-and-fire neurons receiving time-varying
inputs x(t) = (x1(t), . . . , xK(t)), where K is the dimension of the input. For each neuron i

14

we denote with si(t) =
∑
k δ(t

i
k − t) the spike train function, where δ represents the Dirac

delta function and {tik ≥ 0} is the set of discrete times at which a spike was emitted. The
population spike train function is described by the vector s(t) = (s1(t), . . . , sN (t))

T. We
define the filtered spike trains (loosely called firing rate) of neuron i as a convolution of the
spike train with an exponentially decaying kernel

ri(t) =

∫ t

0

exp(−λt′)si(t− t′)dt′ =
∑
tik≤t

exp(−λ(t− tik))) (11)

with leak constant λ, or, equivalently, in the differential form

ṙi(t) = −λri(t) + si(t).

We denote the firing rate for all neurons by the vector r(t) = (r1(t), . . . , rN (t))T. Vectors will
be denoted by bold letters, and wherever possible we will exclude the explicit dependence on
time for the sake of text clarity.2 A neuron i fires a spike whenever its membrane potential,
Vi exceeds a spiking threshold, Ti, and is then reset to the value Vi = Ri.

Consider a generic smooth function G : RK → RM , M ≥ 1. Our goal is to derive
dynamics and connectivity of the network so that its output activity provides an accurate
representation of the modification of the incoming signal y = G(x) ∈ RM . Notice that, using
the identity function, one can recover the same form considered in Barrett et al. (2016).

Following the assumptions made in the main text, we require the signals to be linearly
decodable, so that the readout can be simply written as ŷ = Dr ≈ G(x). The matrix
D ∈ RM×N is called the decoding matrix, and its i-th column vector Di ∈ RM is the fixed
contribution of neuron i to the signal. The accuracy of the representation is measured using
a squared error loss function, E = ‖y − ŷ‖22 = ‖G(x)− ŷ‖22. The second assumption made
in the main text requests the network to be efficient, and can be formalized by asking that a
neuron fires a spike only if its effect on the readout will reduce the loss function:

E(spike) < E(no spike),

which is, noticing that a spike of neuron i changes the readout by ŷ→ ŷ + Di,

‖G(x)− (ŷ + Di)‖22 < ‖G(x)− ŷ‖22 . (12)

After expanding the squares and canceling equal terms we obtain

‖Di‖22 − 2DT
i (G(x)− ŷ) < 0, (13)

which can be rearranged into

DT
i (G(x)− ŷ) >

‖Di‖22
2

. (14)

This equation is crucial: it describes a spiking rule under which the loss function is reduced,
and it offers an enticing geometric interpretation of the behavior of the network (Calaim
et al., 2020). The right hand side of the equation is fixed, and can be interpreted as the
spiking threshold of neuron i:

Ti =
‖Di‖22

2
.

The left hand side of the equation, similarly to the derivation showed in (Barrett et al., 2016),
is used to define the voltage of neuron i

Vi = DT
i (G(x)− ŷ), (15)

2Throughout the text, the input signals, the membrane voltages and the spike trains are all time-dependent
quantities, whereas the thresholds, the decay constants, and the connection strengths are all constants.

15

which, taking the derivative, yields,

V̇i = DT
i

(
dG(x)

dt
− dŷ

dt

)
= DT

i (JG(x)ẋ) + DT
i λŷ −

∑
k

DT
iDksk,

(16)

where we used JG to indicate the Jacobian of the function G. Using (15), we have that
DT
i ŷ = Vi −DT

i (G(x)::::::::::::::::::::
DT
i ŷ = −Vi + DT

i (G(x), and substituting this into (16) we obtain:

V̇i = −λVi + DT
i (JG(x)ẋ + λG(x))−

∑
k

DT
iDksk. (17)

This equation describes the dynamic behavior of the voltage of a neuron in a network that
represents G(x). We will use the vector form

v̇ = −λv + DT (JG(x)ẋ + λG(x)) + Ωfs, (18)

where Ωf = −DTD represents the fast connections among units, and also includes the reset
terms on the diagonal.

7.2
:::::
The

:::::::::::::
Kronecker

::::::::::
product

::::::::::
Throughout

::::
the

:::::
text

:::
we

::::::
make

::::::
heavy

::::
use

::
of

::::
the

::::::::::
Kronecker

::::::::
product.

::::
⊗

::::::::::
represents

:::
the

:::::::::
Kronecker

::::::::
product,

::::::
which

::
is

:::::::
defined

:::
for

::::
any

::::::
couple

:::
of

::::::::
matrices

:::::
A,B

::
of

::::
any

:::::::::
arbitrary

:::
size

::
as

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
::::::::::::::::::::::::::::

:::
We

:::::
often

:::
use

::::
the

:::::::::::::
mixed-product

:::::::::
property,

::::::
which

::::::
states:

:::
If

:::::::
A,B,C

::::
and

:::
D

:::
are

::::::::
matrices

::
of

::::
such

::::
size

::::
that

::::
one

:::
can

:::::
form

:::
the

:::::::
matrix

::::::::
products

::::
AC

::::
and

:::::
BD,

::::
then

:

(A⊗B)(C⊗D) = (AC)⊗ (BD).
::::::::::::::::::::::::::::::

7.3 Representation of the multiplication of incoming inputs

Consider the function G : RK → RK2

defined as G(x) = x⊗ x, where ⊗ is the Kronecker
product. Suppose that the input x = (x1, . . . , xK) is given as a linearly decodable input
from an upstream network, such that x = Dr, where r describes the filtered spike-trains of
the upstream neurons and D is their decoding matrix. This generalization requires us to
keep track of ẋ: if the upstream neurons follow equation (11), and we denote with s their
spike trains, we will have that ẋ = Dṙ = D(s− λr) , where λ represents their leak constant.
In order to use eq. (18), we need to compute the Jacobian of the function G. That’s given
by the K2 ×K matrix JG(x), with column i given by dG

dxi
. Denote with Di the i−th row of

the matrix D, and with [JG(x)ẋ]iK+j the (iK + j)−th entry of the matrix-vector product
JG(x)ẋ ∈ RK2

, for 0 < i ≤ j ≤ K. We have:

[JG(x)ẋ]iK+j =
dG

dxi

dxi
dt

+
dG

dxj

dxj
dt

= xj ẋi + xiẋj

= (Djr)(Di(s− λr)) + (Dir)(Dj(s− λr)

= (Dj ⊗Di + Di ⊗Dj)(r⊗ (s− λr))

= (Di ⊗Dj)(r⊗ s + s⊗ r− 2λr⊗ r)

16

and
[G(x)]iK+j = (Dir)(Djr) = (Di ⊗Dj)(r⊗ r).

We can now derive the voltage equations of a network of neurons that represents the product
of any pair of input dimensions using the equation derived in the previous section. Denote
with σ the spike train of the network, and with ρ their filtered spike train with leak constant
α. Using eq. (18) we have

v̇ = −λv + Ωx(r⊗ s + s⊗ r + (α− 2λ)r⊗ r) + ΩW
f σ,

with Ωx = WT(D⊗D), ΩW
f = −WTW and W being their decoding matrix. An example

of the output of such a network can be seen in Supp. Fig. 1.
:::
??.

:
In that case the input was

3−dimensional, and the 9−dimensional output faithfully represented the product of each
input dimension pair.

7.4 Implementing dynamical systems in spike coding networks
By using the identity function G(x) = x in (18) we obtain the “classical” equation

v̇ = −λv + DT(ẋ + λx) + Ωfs. (19)

This will be the starting point to implement linear and nonlinear dynamical systems. Linear
dynamical systems were already considered in (Boerlin et al., 2013). Here we will focus on a
more general class of nonlinearities, namely polynomial nonlinearities, and show that the
original formulation can be analytically extended to implement any polynomial nonlinearity.

Denote with F : RK → RK the dynamic under study, so that ẋ = F (x). Starting from
(19) and knowing that x ≈ x̂ we can consider the following approximation:

v̇ = −λv + DT(F (x̂) + λx̂) + Ωfs. (20)

If F is a linear dynamic of the form F (x) = Ax, with the matrix A ∈ RK×K , we recover
the same form considered in (Boerlin et al., 2013):

v̇ = −λv + DT (Ax̂ + λx̂) + Ωfs

= −λv + DT (ADr + λDr) + Ωfs

= −λv + Ωsr + Ωfs,

(21)

where Ωf = −DTD and Ωs = DT(A + λI)D represent the fast and slow connections
respectively.

If F is polynomial, we proceed as follows. Let ⊗ represent the Kronecker product, which
is defined for any couple of matrices A,B of any arbitrary size as

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
Among the other properties, the one that will be used is the mixed-product, which states:
If A,B,C and D are matrices of such size that one can form the matrix products AC and
BD, then

(A⊗B)(C⊗D) = (AC)⊗ (BD).

Using Kronecker notation, any polynomial F : RK → RK with maximum degree g can
be written in the form

F (x) =

g∑
d=0

Adx
⊗d, (22)

17

where Ad ∈ RK×Kd

is the matrix of coefficients for the polynomials of degree d, and we
define M⊗d = M⊗M⊗· · ·⊗M as the Kronecker product applied d times, with the convention
that M⊗0 = 1 and M⊗1 = M. Once again replacing x by x̂, as well as using the notation
introduced in (22) and the mixed-product property, we get

F (x̂) =

g∑
d=0

Adx̂
⊗d

= A0 + A1x̂ + A2x̂
⊗2 + A3x̂

⊗3 + . . .

= A0 + A1Dr + A2(Dr)⊗2 + A3(Dr)⊗3 + . . .

= A0 + A1Dr + A2(D
⊗2)(r⊗2) + A3(D

⊗3)(r⊗3) + . . .

=

g∑
d=0

AdD
⊗dr⊗d.

Inserting it into (20) one obtains the equations describing a network of integrate-and-fire
neurons that approximate the solution of a polynomial dynamical system:

v̇ = −λv −DTDs + DT(

g∑
d=0

AdD
⊗dr⊗d + λx̂)

= −λv + Ωfs + Ωm0
s + Ωm1

s r + Ωm2
s r⊗2 + · · ·+ Ωmg

s r⊗d

= −λv + Ωfs +

g∑
d=0

Ωmd
s r⊗d,

(23)

where Ωf = −DTD, Ωm1
s = DT(A1 + λI)D and Ωmd

s = DTAdD
⊗d for d ∈ {0, 2, 3, . . . , g}.

7.5 Implementing the Lorenz system
Denoting x = (x, y, z)T, the Lorenz attractor can be described in the form of eq. 22 as

ẋ = Ax + Bx⊗2,

where

A =

−σ σ 0
ρ −1 0
0 0 −β

 , (24)

and B ∈ R3×9 with B23 = −1, B32 = 1, and all other elements of B being zero.
Following eq. 23 he

:::
the

:
corresponding voltage dynamics in an mSCN are described by

v̇ = −λv + Ωfs + Ωm1
s r + Ωm2

s r⊗2,

where Ωf = −DTD, Ωm1
s = DT(A + λI)D and Ωm2

s = DTBD⊗2.

7.6 Learning nonlinear dynamics through basis functions
In previous work the standard SCN derivation was extended to implement arbitrary nonlinear
dynamical systems through weighted basis functions, meant to model nonlinear synapses or
dendrites (Alemi et al., 2018; Thalmeier et al., 2016). The derivation consists of

::
We

::::
will

:::
use

:
a
:::::::
similar

::::::::
approach

:::
to

:::::::::::
approximate

::::
the

::::::::
nonlinear

:::::
part

::
of

::
a

:::::::::
dynamical

:::::::
system

::
of

::::
the

::::
form

:

ẋ = Ax + F (x).
::::::::::::::

(25)

:::
The

:::::::::::::
basis-function

:::::::::
approach

::::::::::
derivation

::::::::
consists

:
replacing the function F

::::
F (x)

:
by a

weighted set of basis functions gi:L:::::
basis

:::::::::
functions

:::::::::::::::::::::::
g(x) = [g0(x), . . . , gL(x)], such that

18

∑
i aigi(x) ≈ F (x), so that eq.

::::::::::
Cg ≈ F (x)

:::::::
(where

::::::::::
C ∈ RK×L

:::
are

::::
the

::::::::
required

:::::::::
weights).

:::
Eq.

:
(20) can

::::
then be rewritten as In previous work the weights ai :

C
:
were found through

supervised local learning rules. For brevity and comparison’s sake we will instead find the
optimal weights through regression (following (Eliasmith and Anderson, 2004)).

We can find the weights ai by solving the the following optimization problem

minAC
:
||AG− FF

:
(X)−CG

:::::
||22, (26)

where X are the
::::::::::
X ∈ RK×M

::::
are

::
M

:
sampled inputs, G

::::::::::
G ∈ RL×M

:
are the resulting basis

functions
:::::::
function

:::::::
outputs, and F () is the target function. The solution that minimizes this

is
:::::::
ordinary

:::::
least

:::::::
squares

::::::
(OLS)

::::::::
solution

::
is

::::
then

:

ACOLS
:::

= F (X)GT(F (X)F (X)T)−1. (27)

In previous work (Alemi et al., 2018; Thalmeier et al., 2016) online learning rules were used
to minimize the cost

:::::::::::::::::::::::::::::::::::::
(Alemi et al., 2018; Thalmeier et al., 2016), but as learning rules are

not the focus of this paper, we used the above solution. As a nonliarity
:::
For

:::
the

:::::
basis

::::::::
functions

:
we used a simple rectification function (g(x) = [bx+c]+, with randomly distributed

b ∈ [−1, 1] and c ∈ [−90, 90])of the input, but many types of nonlinearities will work.

7.7 First order approximation of the double pendulum
The equations describing the time evolution of the double pendulum with each length l and
mass m can be derived using the Lagrangian (Levien and Tan, 1993). θ1, θ2 describe the
angles of the first and second pendulum with respect to the vertical axis (i.e. θi = 0 when
the pendulum is pointing downwards). The position of the centers of mass can be written
thanks to these two coordinates: assuming that the origin is at the point of suspension of
the first pendulum, its center of mass will be at:

x1 =
l

2
sin θ1, y1 = − l

2
cos θ1

and the center of mass of the second pendulum is at

x2 = l
(
sin θ1 +

1
2 sin θ2

)
, y2 = −l

(
cos θ1 +

1
2 cos θ2

)
.

The full dynamics can be described by a 4−dimensional dynamical system representing the
two angles and the two moments:

θ̇1 =
6

ml2
2pθ1 − 3 cos(θ1 − θ2)pθ2
16− 9 cos2(θ1 − θ2)

θ̇2 =
6

ml2
8pθ2 − 3 cos(θ1 − θ2)pθ1
16− 9 cos2(θ1 − θ2)

ṗθ1 = − 1
2ml

2
(
θ̇1θ̇2 sin(θ1 − θ2) + 3

g

l
sin θ1

)
ṗθ2 = − 1

2ml
2
(
−θ̇1θ̇2 sin(θ1 − θ2) +

g

l
sin θ2

)
.

We will use a small angle approximation of the above equations: if θ ≈ 0, the functions
sin, cos are well approximated by θ, 1 respectively. The introduction of this simplifying
assumption turned the above equations into these:

θ̇1 =
6

7ml2
(2pθ1 − 3pθ2)

θ̇2 =
6

7ml2
(8pθ2 − 3pθ1)

ṗθ1 = − 1
2ml

2
(
θ̇1θ̇2(θ1 − θ2) + 3

g

l
θ1

)
ṗθ2 = − 1

2ml
2
(
−θ̇1θ̇2(θ1 − θ2) +

g

l
θ2

)
.

(28)

19

These can be implemented using either equation (23) or (7) by considering x = (θ1, θ2, pθ1 , pθ2)
and rewriting the dynamical system as ẋ = Ax + Cx⊗3, where

A =

0 0 2k −3k
0 0 −3k 8k

3cg/l 0 0 0
0 cg/l 0 0

 , (29)

and C ∈ R4×64 with C3,41 = −6ck2, C3,42 = 6ck2,C3,45 = 25ck2,C3,46 = −25ck2,C3,61 =
−24ck2,C3,62 = 24ck2, C4 = −C3 and all the other entries set to zero, with k = 6/(7ml2)
and c = −1/2ml2.

7.8 Connectivity density
We consider networks ofN neurons representing aK-dimensional signal space, with decoding
matrix D ∈ RK×N . The i−th column vector of the matrix D, denoted by Di, represents the
weights associated to neuron i. Any given unit in our setting could participate in the coding
of an arbitrary number of dimensions, given by the number of nonzero terms of the decoding
weights Di. Here and in the following we will say that “neuron i codes for dimension x”
meaning that Dx

i 6= 0. So far, we have considered that each neuron codes for each signal
dimension, meaning that D is dense resulting in all-to-all connectivity. We will analyze here
::::
Here

:::
we

:::::::
discuss the expected amount of connections based on the sparsity of the decoding

matrix D of a network implementing a generic dynamical system ẏ = Ay + By⊗y.

7.8.1 Fast connections Ωf

For the fast connections, the connectivity matrix is given by DTD. For any pair of neurons
m,n we will have that a (fast) connection exists if DT

mDn 6= 0, which means that if these two
neurons “share a dimension” (i.e. Dm,Dn have nonzero entries in at least one common spot
and they are not orthogonal) they will need a fast connection among them. Let’s denote with
F the number of fast connections the system needs to make, and denote with 0 ≤ pnd ≤ 1
the probability that a neuron n will participate in the representation of the d−th dimension
(i.e. pnd = P (Dd

n 6= 0)). Let’s assume that they are all independent. Then the probability
that any given pair of neurons n,m will need a connection is given by the probability that
they both end up coding for at least one common dimension, which is

::::
given

:::
by

:

p(
: :::::::
neurons

:
n,m
::: ::::

code
::::
for

::::::::
common

::::::::::
dimension) =

::
1−

K∏
d=1

(1− pndpmd).

In the case where pnd = p
:::::
(such

::::
that

::::::::
neurons

:::::
code

:::
for

::::
each

::::::::
possible

::::::::::
dimension

::::
with

:::::
equal

::::::::::
probability)

:
we can compute the expected number of fast connections :

E(F) =
N(N − 1)

2

(
1− (1− p2)K

)
.

::
for

::::::::
different

:::::::
neuron

::::::::
numbers

::::
and

::::::::
decoding

::::::::
densities

:::
as

:

E(#fast connections) =
N(N − 1)

2

(
1− (1− p2)K

)
,

::

(30)

7.8.2 Slow connections Ωs

Slow connections have the form Ωs = DT(A + λI)D = DTAD + λDTD. The second
part

::::
term, λDTD, has exactly the form of the already considered case of fast connections. So

the interesting part is
:::
We

:::::
focus

:::
on

:::
the

::::
first

:::::
term

:
DTAD, which will add further connections

20

to allow the network to solve linear dynamical systems. Since A is not symmetric in general,
Ωs can be non symmetric too, hence the total possible number of slow connections is N2,
and will be so when the decoding matrix D is not sparse. If the matrix A has a non-zero
entry at a location d, e, all the neurons that code for dimension d will have to connect to all
the neurons that code for dimension e. The probability that two neurons n,m will form a
slow connection will be pndp

m
e , or simply p2 if the probability is uniform across dimensions

and neurons. The expected number of slow connections (due to that single non-zero entry) is

N∑
n=1

N∑
m=1

pndp
m
e = (Np)2,

:::::::::::::::::::::::::

∑N
n=1

∑N
m=1 p

n
dp
m
e = (Np)2, where the last equality holds only in case of uniform probability.

In that case we also have
E(S) ≤ E(F) +NA(Np)

2,

E(#slow connections) ≤ E(#fast connections) +NA(Np)
2,

::
(31)

where S is the number of slow connections and NA is the number of nonzero entries in A.

7.8.3 Quadratic connections Ωnl

The quadratic connections take
:::
the form Ωnl = DTB(D⊗D). If the decoding matrix is not

sparse, the number of quadratic connections will be ∝ N3. In fact, the maximum possible
number is given by N2(N − 1)/2, corresponding to each neuron (N)

::::
being

:
connected to

each possible pair (N(N−1
2). On the other hand, if D is sufficiently sparse, we can reason

as follows. Denote with Gd the group of neurons s.t. Dd 6= 0
:::
that

:::::
code

:::
for

:::::::::
dimension

:::
d,

:::
i.e.

:::::::::::::::::
Gd = {n | Dd

n 6= 0}. Let’s assume that our dynamical system requires dimension d depends
nonlinearly on dimensions e and f , i.e. ẋd ∝ xexf , or equivalently Bd,eK+f 6= 0. Then, each
neuron in Gd needs to keep track of coincident firing of any neuron in Ge with any other
in Gf . The probability that a neuron in Gd will need to take care of coincident spiking of
the pair of neurons m,n is 1− (1− pne pmf)(1− pme pnf), corresponding to the probability that
at least one of the two neurons codes for dimension e and the other for dimension f . In
the case of uniform p this reduces to 2p2 − p4, so each neuron in Gd will need an average of
N(N−1)

2 (2p2 − p4) coincidence detectors, leading to an upper bound for the expected total
number of multiplicative synapses

E(Q) ≤ NBnd
N(N − 1)

2
(2p2 − p4) ≈ NB(Np)3,

E(#multiplicative connections) ≤ NBnd
N(N − 1)

2
(2p2 − p4) ≈ NB(Np)3,

:::

(32)

where nd = #Gd ≈ Np and NB is the number of nonzero entries in B. The equality sign
holds only in the case NB ≤ 1.

7.8.4 Simulations

In order to simulate the connectivity we fixed a decoder density p and randomly filled the
decoding matrix using a Bernoulli distribution B(p) in each entry for 1000 times. For the
fast connections we varied the size of the output signal - i.e. the size of the decoding matrix.
For slow and multiplicative synapses the dimensionality of the signal K did not affect the
density of the resulting connections (not shown). What influenced the amount of slow
and multiplicative synapses was the number of non-zero entries in the matrices A and B,
respectively.

21

7.9 Code details
Simulations were run in Ubuntu 20.04LTS on a Intel Core i5-6200U CPU with 32GB of
RAM. The source code is available at https://github.com/michnard/mult_synapses.

References
Abbott, L. F., DePasquale, B., and Memmesheimer, R.-M. (2016). Building functional networks of

spiking model neurons. Nature neuroscience, 19(3):350–355.

Alemi, A., Machens, C. K., Deneve, S., and Slotine, J.-J. (2018). Learning nonlinear dynamics in
efficient, balanced spiking networks using local plasticity rules. In Thirty-second aaai conference
on artificial intelligence.

Arandia-Romero, I., Tanabe, S., Drugowitsch, J., Kohn, A., and Moreno-Bote, R. (2016). Multi-
plicative and additive modulation of neuronal tuning with population activity affects encoded
information. Neuron, 89(6):1305–1316.

Augustine, G. J., Santamaria, F., and Tanaka, K. (2003). Local calcium signaling in neurons.
Neuron, 40(2):331–346.

Baker, C., Zhu, V., and Rosenbaum, R. (2020). Nonlinear stimulus representations in neural circuits
with approximate excitatory-inhibitory balance. PLoS computational biology, 16(9):e1008192.

Barak, O. (2017). Recurrent neural networks as versatile tools of neuroscience research. Current
opinion in neurobiology, 46:1–6.

Barrett, D. G., Deneve, S., and Machens, C. K. (2016). Optimal compensation for neuron loss. Elife,
5:e12454.

Barth, A. L. and Poulet, J. F. A. (2012). Experimental evidence for sparse firing in the neocortex.
Trends in Neurosciences, 35(6):345–355.

Boerlin, M., Machens, C. K., and Denève, S. (2013). Predictive coding of dynamical variables in
balanced spiking networks. PLoS Comput Biol, 9(11):e1003258.

Calaim, N., Dehmelt, F. A., Gonçalves, P. J., and Machens, C. K. (2020). Robust coding with
spiking networks: a geometric perspective. bioRxiv.

Cunningham, J. P. and Yu, B. M. (2014). Dimensionality reduction for large-scale neural recordings.
Nature neuroscience, 17(11):1500–1509.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., Dimou, G., Joshi, P.,
Imam, N., Jain, S., et al. (2018). Loihi: A neuromorphic manycore processor with on-chip learning.
IEEE Micro, 38(1):82–99.

Dayan, P. and Abbott, L. F. (2001). Theoretical neuroscience: computational and mathematical
modeling of neural systems. Computational Neuroscience Series.

De Branges, L. (1959). The stone-weierstrass theorem. Proceedings of the American Mathematical
Society, 10(5):822–824.

Denève, S. and Machens, C. K. (2016). Efficient codes and balanced networks. Nature neuroscience,
19(3):375–382.

Eliasmith, C. (2005). A Unified Approach to Building and Controlling Spiking Attractor Networks.
Neural Computation, 17(6):1276–1314.

Eliasmith, C. and Anderson, C. H. (2004). Neural engineering: Computation, representation, and
dynamics in neurobiological systems. MIT press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., and Rasmussen, D.
(2012). A Large-Scale Model of the Functioning Brain. Science, 338(6111):1202–1205.

22

https://github.com/michnard/mult_synapses

Fino, E. and Yuste, R. (2011). Dense inhibitory connectivity in neocortex. Neuron, 69(6):1188–1203.

Gabbiani, F., Krapp, H. G., Koch, C., and Laurent, G. (2002). Multiplicative computation in a
visual neuron sensitive to looming. Nature, 420(6913):320–324.

Harris, K. D. and Mrsic-Flogel, T. D. (2013). Cortical connectivity and sensory coding. Nature,
503(7474):51–58.

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-Cummings, R., Delbruck,
T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S., et al. (2011). Neuromorphic silicon neuron
circuits. Frontiers in neuroscience, 5:73.

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural networks-
with an erratum note. Bonn, Germany: German National Research Center for Information
Technology GMD Technical Report, 148(34):13.

Kasthuri, N., Hayworth, K. J., Berger, D. R., Schalek, R. L., Conchello, J. A., Knowles-Barley, S.,
Lee, D., Vázquez-Reina, A., Kaynig, V., Jones, T. R., et al. (2015). Saturated reconstruction of a
volume of neocortex. Cell, 162(3):648–661.

Keemink, S. W. and Machens, C. K. (2019). Decoding and encoding (de) mixed population responses.
Current Opinion in Neurobiology, 58:112–121.

Ko, H., Hofer, S. B., Pichler, B., Buchanan, K. A., Sjöström, P. J., and Mrsic-Flogel, T. D.
(2011). Functional specificity of local synaptic connections in neocortical networks. Nature,
473(7345):87–91.

Koch, C. and Poggio, T. (1992). Multiplying with Synapses and Neurons. In Single Neuron
Computation, pages 315–345. Elsevier.

Larkum, M. E. and Nevian, T. (2008). Synaptic clustering by dendritic signalling mechanisms.
Current opinion in neurobiology, 18(3):321–331.

Lefort, S., Tomm, C., Sarria, J.-C. F., and Petersen, C. C. (2009). The excitatory neuronal network
of the c2 barrel column in mouse primary somatosensory cortex. Neuron, 61(2):301–316.

Levien, R. and Tan, S. (1993). Double pendulum: An experiment in chaos. American Journal of
Physics, 61(11):1038–1044.

Li, N., Daie, K., Svoboda, K., and Druckmann, S. (2016). Robust neuronal dynamics in premotor
cortex during motor planning. Nature, 532(7600):459–464.

London, M. and Häusser, M. (2005). Dendritic computation. Annu. Rev. Neurosci., 28:503–532.

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the atmospheric sciences, 20(2):130–
141.

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural computation, 14(11):2531–
2560.

Mancoo, A., Keemink, S., and Machens, C. K. (2020). Understanding spiking networks through
convex optimization. Advances in Neural Information Processing Systems, 33.

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-dependent computation
by recurrent dynamics in prefrontal cortex. nature, 503(7474):78–84.

Mastrogiuseppe, F. and Ostojic, S. (2018). Linking connectivity, dynamics, and computations in
low-rank recurrent neural networks. Neuron, 99(3):609–623.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F., Jackson,
B. L., Imam, N., Guo, C., Nakamura, Y., et al. (2014). A million spiking-neuron integrated circuit
with a scalable communication network and interface. Science, 345(6197):668–673.

23

Mitchell, S. J. and Silver, R. A. (2003). Shunting inhibition modulates neuronal gain during synaptic
excitation. Neuron, 38(3):433–445.

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in spiking neural
networks: Bringing the power of gradient-based optimization to spiking neural networks. IEEE
Signal Processing Magazine, 36(6):51–63.

Nezis, P. and Rossum, M. C. W. v. (2011). Accurate multiplication with noisy spiking neurons.
Journal of Neural Engineering, 8(3):034005.

Perin, R., Berger, T. K., and Markram, H. (2011). A synaptic organizing principle for cortical
neuronal groups. Proceedings of the National Academy of Sciences, 108(13):5419–5424.

Peña, J. L. and Konishi, M. (2001). Auditory Spatial Receptive Fields Created by Multiplication.
Science, 292(5515):249–252.

Poirazi, P., Brannon, T., and Mel, B. W. (2003). Pyramidal neuron as two-layer neural network.
Neuron, 37(6):989–999.

Popov, V. I. and Stewart, M. G. (2009). Complexity of contacts between synaptic boutons and
dendritic spines in adult rat hippocampus: Three-dimensional reconstructions from serial ultrathin
sections in vivo. Synapse, 63(5):369–377.

Rigotti, M., Barak, O., Warden, M. R., Wang, X.-J., Daw, N. D., Miller, E. K., and Fusi, S. (2013).
The importance of mixed selectivity in complex cognitive tasks. Nature, 497(7451):585–590.

Rubin, D. B., Van Hooser, S. D., and Miller, K. D. (2015). The stabilized supralinear network: a
unifying circuit motif underlying multi-input integration in sensory cortex. Neuron, 85(2):402–417.

Salinas, E. and Abbott, L. F. (1996). A model of multiplicative neural responses in parietal cortex.
Proceedings of the national academy of sciences, 93(21):11956–11961.

Schiller, J., Major, G., Koester, H. J., and Schiller, Y. (2000). Nmda spikes in basal dendrites of
cortical pyramidal neurons. Nature, 404(6775):285–289.

Semedo, J. D., Zandvakili, A., Machens, C. K., Byron, M. Y., and Kohn, A. (2019). Cortical areas
interact through a communication subspace. Neuron, 102(1):249–259.

Song, S., Sjöström, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B. (2005). Highly nonrandom
features of synaptic connectivity in local cortical circuits. PLoS Biol, 3(3):e68.

Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M., and Harris, K. D. (2019a). High-
dimensional geometry of population responses in visual cortex. Nature, 571(7765):361–365.

Stringer, C., Pachitariu, M., Steinmetz, N., Reddy, C. B., Carandini, M., and Harris, K. D. (2019b).
Spontaneous behaviors drive multidimensional, brainwide activity. Science, 364(6437).

Strogatz, S. H. (2018). Nonlinear dynamics and chaos with student solutions manual: With
applications to physics, biology, chemistry, and engineering. CRC press.

Sussillo, D. (2014). Neural circuits as computational dynamical systems. Current opinion in
neurobiology, 25:156–163.

Sussillo, D. and Abbott, L. F. (2009). Generating coherent patterns of activity from chaotic neural
networks. Neuron, 63(4):544–557.

Thalmeier, D., Uhlmann, M., Kappen, H. J., and Memmesheimer, R.-M. (2016). Learning universal
computations with spikes. PLoS computational biology, 12(6):e1004895.

Young, A. R., Dean, M. E., Plank, J. S., and S. Rose, G. (2019). A Review of Spiking Neuromorphic
Hardware Communication Systems. IEEE Access, 7:135606–135620.

Zenke, F. and Vogels, T. P. (2021). The remarkable robustness of surrogate gradient learning for
instilling complex function in spiking neural networks. Neural Computation, 33(4):899–925.

24

Zhang, D., Li, Y., Rasch, M. J., and Wu, S. (2013). Nonlinear multiplicative dendritic integration
in neuron and network models. Frontiers in computational neuroscience, 7:56.

Zhou, W., Xu, Y., Simpson, I., and Cai, Y. (2007). Multiplicative Computation in the Vestibulo-
Ocular Reflex (VOR). Journal of Neurophysiology, 97(4):2780–2789.

25

8 Supplementary Figures
Supp. Fig. 1: Robustness of SCN. Implementation of a Lorenz dynamical system in a network with
multiplicative synapses. For the first 9 seconds, 10 neurons were artificially killed every second.
The peak analysis was executed on a 200 seconds simulation with either 100 or 10 cells.

2nd order
P
S
P
 (

m
V

)

P
S
P
 (

m
V

)

P
S
P
 (

m
V

)

*

3rd order

*

4th order

*

Supp. Fig. S1:
::::::
Higher

::::::
order

::::::::::::
multiplicative

:::::::::::
interactions

:::::::
among

:::::
cells.

::::::
Second

::::::
(resp.

::::::
third,

::::::
fourth)

:::::
order

:::::::::::
interactions

:::::::
require

:::
the

:::::::::::::
post-synaptic

:::
cell

:::
to

::::::
detect

:::::::::
coincident

:::::::
activity

:::
in

:::
two

:::::
(resp.

::::::
three,

:::::
four)

:::::::::::
pre-synaptic

:::::
cells.

26

Supp. Fig. S2:
::::::::::
Robustness

::
of

::::::::
mSCNs.

:::
(A)

::::::::
Example

:::::::
readout

:::
of

:
a
::::::::
network

::
of

::::
100

:::::::
neurons

::::::::::::
implementing

:
a
:::::::
Lorenz

:::::::::
dynamical

:::::::
system.

::::
For

:::
the

::::
first

:
9
::::::::
seconds,

:::
10

:::::::
neurons

::::
were

::::::::::
artificially

:::::
killed

:::::
every

:::::::
second.

:::::
(B)

::::
Spike

::::::
raster

:::::
plot

::
of

::::
the

:::
100

::::::::
neurons

:::
as

:
a
::::::::
function

:::
of

:::::
time.

:::::
(C)

:::::::
Average

:::::::
squared

::::::
error

::
as

::
a
::::::::
function

:::
of

::::
the

::::::::::
proportion

::
of

::::::::
neurons

::::
lost

:::::
(out

::
of

::::
100

::::::
total)

::
for

::::::::
different

:::::::
choices

:::
of

:::::::
decoder

::::::::
density.

::::::::
Shaded

:::::
areas

:::::::::
represent

::::
95th

::::::::::
confidence

:::::::::
intervals.

:::
The

:::::
error

::::
was

:::::::::
computed

:::
by

:::::::::
measuring

::::
the

:::::::
average

:::::::
squared

::::::::
distance

::
of

::::
the

:::::::
network

::::::::
readout

::::
from

::::
the

::::
real

::::::::
solution

::
of

::::
the

:::::::
Lorenz

::::::::::
dynamical

::::::
system

:::::::::::
(computed

:::::
using

::
a
::::::::::::
Runge-Kutta

:::
4th

:::::
order

:::::::::::
algorithm).

:::::
The

:::::::
network

::::
was

:::::::::
randomly

::::::::::
initialized

:::::
1000

:::::
times

::::
and

::::
the

:::::::
solution

:::
was

:::::::::::::
approximated

:::
for

::
1

::::::
second

:::::
using

:::::::::::::::::::::
N = 100, 90, 80, . . . , 10

::::::::
neurons,

::::::
always

::::::::
starting

::::
from

:::
the

:::::
same

::::::
initial

::::::::
starting

::::::
point.

:::::
The

::::::
dotted

::::
line

::::::::::
represents

::::
the

:::::::
average

::::::::
squared

:::::
error

::
of

::
an

::::::::::::
hypothetical

::::::::
constant

:::::::
readout

::::::
center

:::
at

:::
the

::::::
mean

::
of

::::
the

::::
real

:::::::
solution

:::
in

:::
the

:::::
[0, 1]

::::
time

:::::::
interval.

:::::
(D)

:::::
Peak

::::::::
analysis

:::
on

:
a
::::
200

:::::::
seconds

::::::::
network

:::::::
output

:::::
using

::::
100

::::
cells

:::::
(left),

:::
10

::::
cells

:::
and

::::
full

:::::::
decoder

:::::::
density

::::::
(p=1,

:::::::
center),

:::
10

::::
cells

::::
and

::::::
sparse

:::::::
decoder

:::::::::
(p=0.25,

::::::
right).

::::::
Notice

:::
the

::::
loss

::
of

::::::::
precision

:::
for

::::
the

:::::::
p=0.25

::::::::::::::
implementation.

27

Input Output

Supp. Fig. 2: Representation of the Kronecker product of the input. The Input x̂ was
given by a network which computed a Lorenz system. The second network, using eq. (23),
outputs a signal ≈ x̂⊗x̂. Blue lines represent network output, black dotted lines represent
the real x̂⊗x̂.

Supp. Fig. S3:
:::::::::::::
Representation

::
of

::::
the

::::::::::
Kronecker

:::::::
product

::
of

::::
the

:::::
input

:
.
:::::
The

:::::
Input

::̂
x
::::
was

:::::
given

::
by

::
a
::::::::
network

:::::
which

::::::::::
computed

:
a
:::::::
Lorenz

:::::::
system.

:::::
The

::::::
second

::::::::
network,

::::::
using

:::
eq.

:::::
(23),

:::::::
outputs

:
a
::::::
signal

::::::::
≈ x̂⊗x̂.

:::::
Blue

::::
lines

:::::::::
represent

::::::::
network

:::::::
output,

:::::
black

::::::
dotted

:::::
lines

:::::::::
represent

:::
the

::::
real

:::::
x̂⊗x̂.

28

	Introduction
	Spike coding networks
	Linear autoencoder
	Linear dynamics

	Nonlinear dynamics
	Lorenz attractor

	Higher-order polynomials with sequential networks
	Input transformations
	Combining networks
	Example: approximating a double pendulum

	On the number of required connections
	Discussion
	Related work
	Biological implications
	Computational and neuromorphic applications
	Conclusion

	Methods
	General derivation of spike coding network
	The Kronecker product
	Representation of the multiplication of incoming inputs
	Implementing dynamical systems in spike coding networks
	Implementing the Lorenz system
	Learning nonlinear dynamics through basis functions
	First order approximation of the double pendulum
	Connectivity density
	Fast connections
	Slow connections
	Quadratic connections
	Simulations

	Code details

	Supplementary Figures

